Publications by authors named "Ready Tai"

Histone deacetylases (HDACs) play important roles in regulating gene expression. In yeast and animals, HDACs act as components of multiprotein complexes that modulate transcription during various biological processes. However, little is known about the interacting proteins of plant HDACs.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of histone deacetylase HDA5 in regulating gene expression related to flowering in Arabidopsis plants, highlighting its deacetylase activity and interaction with various proteins.
  • HDA5 mutants exhibit delayed flowering due to increased expression of flowering repressor genes FLC and MAF1, suggesting that HDA5 normally represses these genes.
  • Additionally, HDA5 and another deacetylase, HDA6, are shown to co-regulate gene expression through shared developmental pathways and interact as part of a protein complex.
View Article and Find Full Text PDF

Reversible histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in regulation of eukaryotic gene activity. Acetylation of core histones usually induces an 'open' chromatin structure and is associated with gene activation, whereas deacetylation of histone is often correlated with 'closed' chromatin and gene repression. Histone deacetylation is catalyzed by histone deacetylases (HDACs).

View Article and Find Full Text PDF

PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro.

View Article and Find Full Text PDF

Class II histone deacetylases in humans and other model organisms undergo nucleocytoplasmic shuttling. This unique functional regulatory mechanism has been well elucidated in eukaryotic organisms except in plant systems. In this study, we have paved the baseline evidence for the cytoplasmic and nuclear localization of Class II HDAs as well as their mRNA expression patterns.

View Article and Find Full Text PDF

One-pot multicomponent synthesis to assemble compounds has been an efficient method for constructing a compound library. We have developed one-pot tandem copper-catalyzed azidation and CuAAC reactions that afford 1-thiazolyl-1,2,3-triazoles with anticancer activity. By utilizing this one-pot synthetic strategy, we constructed a library of 1-thiazolyl-1,2,3-triazoles in search of the potent lead compound.

View Article and Find Full Text PDF