Focal cortical epilepsies are frequently refractory to available anticonvulsant drug therapies. One key factor contributing to this state is the limited availability of animal models that allow to reliably study focal cortical seizures and how they recruit surrounding brain areas in vivo. In this study, we selectively expressed the inhibitory chemogenetic receptor, hM4D, in GABAergic neurons in focal cortical areas using viral gene transfer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
We studied correlated firing between motor thalamic and cortical cells in monkeys performing a delayed-response reaching task. Simultaneous recording of thalamocortical activity revealed that around movement onset, thalamic cells were positively correlated with cell activity in the primary motor cortex but negatively correlated with the activity of the premotor cortex. The differences in the correlation contrasted with the average neural responses, which were similar in all three areas.
View Article and Find Full Text PDF-methyl-d-aspartate (NMDA) antagonists are widely used in anesthesia, pain management, and schizophrenia animal model studies, and recently as potential antidepressants. However, the mechanisms underlying their anesthetic, psychotic, cognitive, and emotional effects are still elusive. The basal ganglia (BG) integrate input from different cortical domains through their dopamine-modulated connections to achieve optimal behavior control.
View Article and Find Full Text PDFJ Neurosci Methods
October 2015
Background: Connectivity between brain regions provides the fundamental infrastructure for information processing. The standard way to characterize these interactions is to stimulate one site while recording the evoked response from a second site. The average stimulus-triggered response is usually compared to the pre-stimulus activity.
View Article and Find Full Text PDFContinuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD.
View Article and Find Full Text PDFIn the healthy primate, neurons of the external and internal segments of the globus pallidus (GP) present a primarily irregular firing pattern, and a negligible level of synchrony is observed between pairs of neurons. This holds even for neighboring cells, despite their higher probability to receive common inputs and to innervate each other via lateral connectivity. In the Parkinsonian primate, this changes drastically, and many pairs of GP cells show synchronous oscillations.
View Article and Find Full Text PDFCurrent anatomical models of the cortico-basal ganglia (BG) network predict reciprocal discharge patterns between the external and internal segments of the globus pallidus (GPe and GPi, respectively), as well as cortical driving of BG activity. However, physiological studies revealing similarity in the transient responses of GPe and GPi neurons cast doubts on these predictions. Here, we studied the discharge properties of GPe, GPi, and primary motor cortex neurons of two monkeys in two distinct states: when eyes are open versus when they are closed.
View Article and Find Full Text PDFAccurate detection of the eye state (i.e., open or closed) of animals during electrophysiological recordings is often crucial for analyzing physiological data.
View Article and Find Full Text PDFMidbrain dopaminergic neurons (DANs) typically increase their discharge rate in response to appetitive predictive cues and outcomes, whereas striatal cholinergic tonically active interneurons (TANs) decrease their rate. This may indicate that the activity of TANs and DANs is negatively correlated and that TANs can broaden the basal ganglia reinforcement teaching signal, for instance by encoding worse than predicted events. We studied the activity of 106 DANs and 180 TANs of two monkeys recorded during the performance of a classical conditioning task with cues predicting the probability of food, neutral, and air puff outcomes.
View Article and Find Full Text PDFOctopus arms, as well as other muscular hydrostats, are characterized by a very large number of degrees of freedom and a rich motion repertoire. Over the years, several attempts have been made to elucidate the interplay between the biomechanics of these organs and their control systems. Recent developments in electrophysiological recordings from both the arms and brains of behaving octopuses mark significant progress in this direction.
View Article and Find Full Text PDF