Publications by authors named "Razvan I Stoian"

A field-ready, fiber-based high spatial sampling snapshot imaging spectrometer was developed for applications such as environmental monitoring and smart farming. The system achieves video rate frame transfer and exposure times down to a few hundred microseconds in typical daylight conditions with ∼63,000 spatial points and 32 spectral channels across the 470nm to 700nm wavelength range. We designed portable, ruggedized opto-mechanics to allow for imaging from an airborne platform.

View Article and Find Full Text PDF

The tunable light-guide image processing snapshot spectrometer (TuLIPSS) is a novel remote sensing instrument that can capture a spectral image cube in a single snapshot. The optical modelling application for the absolute signal intensity on a single pixel of the sensor in TuLIPSS has been developed through a numerical simulation of the integral performance of each optical element in the TuLIPSS system. The absolute spectral intensity of TuLIPSS can be determined either from the absolute irradiance of the observed surface or from the tabulated spectral reflectance of various land covers and by the application of a global irradiance approach.

View Article and Find Full Text PDF

A fiber-based snapshot imaging spectrometer was developed with a maximum of 31853 (~188 x 170) spatial sampling and 61 spectral channels in the 450nm-750nm range. A compact, custom-fabricated fiber bundle was used to sample the object image at the input and create void spaces between rows at the output for dispersion. The bundle was built using multicore 6x6 fiber block ribbons.

View Article and Find Full Text PDF