Publications by authors named "Razmik Unanyan"

We generalize the ensemble geometric phase, recently introduced to classify the topology of density matrices, to finite-temperature states of interacting systems in one spatial dimension (1D). This includes cases where the gapped ground state has a fractional filling and is degenerate. At zero temperature the corresponding topological invariant agrees with the well-known invariant of Niu, Thouless, and Wu.

View Article and Find Full Text PDF

We investigate the number entropy S_{N}-which characterizes particle-number fluctuations between subsystems-following a quench in one-dimensional interacting many-body systems with potential disorder. We find evidence that in the regime which is expected to show many-body localization and where the entanglement entropy grows as S∼lnt as function of time t, the number entropy grows as S_{N}∼lnlnt, indicating continuing subdiffusive particle transport at a very slow rate. We demonstrate that this growth is consistent with a relation between entanglement and number entropy recently established for noninteracting systems.

View Article and Find Full Text PDF

The numerical simulation of quantum many-body dynamics is typically limited by the linear growth of entanglement with time. Recently numerical studies have shown that for 1D Bethe-integrable models the simulation of local operators in the Heisenberg picture can be efficient. Using the spin-1/2 XX chain as generic example of an integrable model that can be mapped to free fermions, we provide a simple explanation for this.

View Article and Find Full Text PDF

We propose and analyze a mechanism for Bose-Einstein condensation of stationary dark-state polaritons. Dark-state polaritons (DSPs) are formed in the interaction of light with laser-driven 3-level Lambda-type atoms and are the basis of phenomena such as electromagnetically induced transparency, ultraslow, and stored light. They have long intrinsic lifetimes and in a stationary setup, a 3D quadratic dispersion profile with variable effective mass.

View Article and Find Full Text PDF