In the current study, hard water softening for the removal of Ca and Mg ions was performed using hydrogel beads based on Gum Tragacance (GT) modified by using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and poly(vinyl alcohol). The antibacterial spherical hydrogel beads were fabricated by instantaneous gelation of well dispersed mixture of poly(AMPS)-g-GT (1 g), poly(vinyl alcohol) (PVA, 1 g) flocculent, green-synthesized silver metal nanoparticles (AgNPs, 10 mg), and graphene oxide (GO, 10 mg) in the acetone solution of boric acid and then transferring into the different amounts (0.5-2.
View Article and Find Full Text PDFIn this study, new spherical pH-sensitive porous hydrogel beads were prepared based on the water-soluble gum tragacanth (GT) polysaccharide and graphene oxide (GO) nanosheets by using Ca and Ba ions as crosslink agents, calcium carbonate particles as solid porogen, and Rivastigmine (RIV) as a model drug. The prepared hydrogel beads were characterized by FE-SEM, XRD, FTIR, BET, and TGA techniques. The swelling behavior of the beads was affected by cross-linker content, type of cross-linker, composition of beads, and pH.
View Article and Find Full Text PDFNew composite hydrogels were synthesized based on gum tragacanth (GT) carbohydrate and graphene oxide (GO). GT was sulfonic acid-functionalized and cross-linked by using 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and N,N'-methylenebisacrylamide (MBA) monomers and ceric ammonium nitrate (CAN) as an initiator. The prepared hydrogels were characterized by Fourier transform infrared spectrum (FT-IR), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermogravimetric analysis (TGA).
View Article and Find Full Text PDF