Publications by authors named "Razeghifard M"

Photosystem II (PSII) electron transfer (ET) in the chlorophyll d-containing cyanobacterium Acaryochloris marina (A. marina) was studied by time-resolved electron paramagnetic resonance (EPR) spectroscopy at room temperature, chlorophyll fluorescence, and low-temperature optical spectroscopy. To maximize the ability to measure PSII ET in the intact cells of this organism, growth conditions were optimized to provide the highest specific O(2) activity and the instrumental parameters for the EPR measurements of tyrosine Z (Y(Z)) reduction were adjusted to give the best signal-to-noise over spectral resolution.

View Article and Find Full Text PDF

The Y(Z)* decay kinetics in a formal S(-1) state, regarded as a reduced state of the oxygen evolving complex, was determined using time-resolved EPR spectroscopy. This S(-1) state was generated by biochemical treatment of thylakoid membranes with hydrazine. The steady-state oxygen evolution of the sample was used to optimize the biochemical procedure for performing EPR experiments.

View Article and Find Full Text PDF

Interleukin-4 (IL4) is a multifunctional cytokine which plays a key role in the immune system. Several antagonists/agonists of IL4 are reported through mutagenesis studies, but their solution structural studies using nuclear magnetic resonance (NMR) spectroscopy are hindered as milligram quantities of isotopically labeled protein are required for structural refinements. In this work, a His-tagged recombinant form of human IL4 was overexpressed in Escherichia coli under the control of a T7 promoter.

View Article and Find Full Text PDF

We have used a two histidine-containing synthetic peptide (Sharp et al. (1998) Proc. Natl.

View Article and Find Full Text PDF

Photosystem II catalyzes photosynthetic water oxidation. The oxidation of water to molecular oxygen requires four sequential oxidations; the sequentially oxidized forms of the catalytic site are called the S states. An extrinsic subunit, the manganese-stabilizing protein (MSP), promotes the efficient turnover of the S states.

View Article and Find Full Text PDF

Time-resolved EPR oximetry has been used to determine the oxygen release kinetics in spinach thylakoids and PSII membranes. We observe release kinetics with half-times of approximately 0.85 and approximately 1.

View Article and Find Full Text PDF

Decay of Signal IIvf of photosystem II (PSII), under repetitive flash conditions, was examined in whole cells of wild-type Synechocystis sp. PCC6803 and in cells of an engineered strain, delta psbO, which lacks the extrinsic 33 kDa manganese-stabilizing protein (MSP). Previous polarographic analysis had shown that O2 release during the S3-->[S4]-->S0 transition of the catalytic cycle is significantly retarded in the delta psbO strain relative to the wild-type [Burnap et al.

View Article and Find Full Text PDF

In this paper, we present the first time-dependent measurements of flash-induced infrared difference spectra of photosystem II (PSII) using Fourier transform infrared (FTIR) spectroscopy. With this experimental approach, we were able to obtain the YZoxQA-/YZQA vibrational difference spectrum of Tris-washed, PSII-enriched samples in the absence of hydroxylamine at room temperature (16 +/- 2 degrees C), with a spectral resolution of 4 cm-1 and a temporal resolution of 50 ms. In order to determine the dominant species in the FTIR spectrum at a particular point in time after an excitation flash, the decay kinetics of YZox and QA- were independently monitored by EPR and chlorophyll a fluorescence, respectively, under the same experimental conditions.

View Article and Find Full Text PDF

The Tyrz+ decay kinetics have been analyzed by using time-resolved EPR to determine the half-time of each Si-->S(i + 1) transition in the O2-evolving complex of spinach thylakoids under physiological conditions. Using dark-adapted thylakoids and appropriate single-turnover flash sequences, we were able to detect the signal IIvf kinetics of the Tyrz+ S0-->Tyrz S1, Tyrz+ S1-->Tyrz S2, Tyrz+ S2-->Tyrz S3, and Tyrz+ S3-->(S4)-->Tyrz S0 transitions. To correct for damping of the S state synchronization during the flash sequence, the Kok parameters were estimated by measuring the oxygen flash pattern in situ using nitroxide-based EPR oximetry.

View Article and Find Full Text PDF