Curr Probl Cardiol
April 2008
Cardiovascular disease is commonly found in cancer patients. The co-existence of heart disease and cancer in a patient often complicates treatment, because therapy for one disease may negatively affect the outcome of the other disease. In addition, guidelines for the treatment of cardiovascular disease are often based on studies, which exclude patients who have cancer.
View Article and Find Full Text PDFA common feature of the hemodynamically or metabolically stressed heart is the return to a pattern of fetal metabolism. A hallmark of fetal metabolism is the predominance of carbohydrates as substrates for energy provision in a relatively hypoxic environment. When the normal heart is exposed to an oxygen rich environment after birth, energy substrate metabolism is rapidly switched to oxidation of fatty acids.
View Article and Find Full Text PDFObjective: Unloading of the rodent heart activates the fetal gene program, decreases peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARalpha-regulated gene expression (MCAD), and induces cardiomyocyte atrophy. NF-kappaB regulates the fetal gene program and PPARalpha-regulated gene expression during cardiac hypertrophy and induces atrophy in skeletal muscle. Our objective was to test the hypothesis that NF-kappaB is the regulator for activation of the fetal gene program, for downregulation of PPARalpha and PPARalpha-regulated gene expression, and for cardiomyocyte atrophy in the heart subjected to mechanical unloading.
View Article and Find Full Text PDFGene Regul Syst Bio
November 2007
Background: During pressure overload-induced hypertrophy, unloading-induced atrophy, and diabetes mellitus, the heart induces 'fetal' genes (e.g. myosin heavy chain beta; mhc beta).
View Article and Find Full Text PDFThe size of a cardiomyocyte is determined by relative rates of protein synthesis and degradation. Signaling pathways regulating myocardial protein synthesis have been extensively investigated, not the least because in patients hypertrophy increases cardiovascular morbidity and mortality. Until now strategies to reverse hypertrophy have relied on the inhibition of prohypertrophic signaling pathways.
View Article and Find Full Text PDFThe mechanism for the decrease in cardiomyocyte size with mechanical unloading is unknown. The calpain system regulates cardiomyocyte atrophy. We obtained samples from failing human hearts at the time of implantation and explantation of a left ventricular assist device.
View Article and Find Full Text PDFIschemia and reperfusion (I/R) are characterized by oxidative stress as well as changes in the antioxidant enzymes of the heart. However, little is known about the transcriptional regulation of myocardial antioxidant enzymes in repetitive I/R and hibernating myocardium. In a mouse model of ischemic cardiomyopathy induced by repetitive I/R, we postulated that induction of antioxidant gene expression was dependent on reactive oxygen species (ROS).
View Article and Find Full Text PDFMechanical unloading of the rat heart increases both protein synthesis and protein degradation. The transcriptional mechanism underlying increased protein synthesis during atrophic remodeling is not known. The aim of this study was to identify transcriptional regulators and the gene expression profile regulating protein synthesis in the unloaded rat heart and in the unloaded failing human heart.
View Article and Find Full Text PDFBackground: In skeletal muscle, transcript levels of proteins regulating the ubiquitin proteasome system (UPS) increase with atrophy and decrease with hypertrophy. Whether the same is true for heart muscle is not known.
Aim Of The Study: We set out to characterize the transcriptional profile of regulators of the UPS during atrophy-, hypertrophy-, and hypoxia-induced remodeling of the heart.
We have previously shown that the common feature of both pressure overload-induced hypertrophy and atrophy is a reactivation of the fetal gene program. Although gene expression profiles and signal transduction pathways in pressure overload hypertrophy have been well studied, little is known about the mechanisms underlying atrophic remodeling of the unloaded heart. Here, we induced atrophic remodeling by heterotopic transplantation of the rat heart.
View Article and Find Full Text PDFFrom the first stages of differentiation in the embryo to the end of life, energy substrate metabolism and function are inextricably linked features of the heart. The principle of energy substrate metabolism is simple. For a given developmental stage and for a given environment, the heart oxidizes the most efficient fuel on the path to ATP.
View Article and Find Full Text PDFAlthough signaling mechanisms inducing cardiac hypertrophy have been extensively studied, little is known about the mechanisms that reverse cardiac hypertrophy. Here, we describe the existence of a similar Akt/forkhead signaling axis in cardiac myocytes in vitro and in vivo, which is regulated by insulin, insulin-like growth factor (IGF), stretch, pressure overload, and angiotensin II stimulation. FOXO3a gene transfer prevented both IGF and stretch-induced hypertrophy in rat neonatal cardiac myocyte cultures in vitro.
View Article and Find Full Text PDFPreviously we reported that the beneficial effects of beta-adrenergic blockade in chronic mitral regurgitation (MR) were in part due to induction of bradycardia, which obviously affects myocardial energy requirements. From this observation we hypothesized that part of the pathophysiology of MR may involve faulty energy substrate utilization, which in turn might lead to potentially harmful lipid accumulation as observed in other models of heart failure. To explore this hypothesis, we measured triglyceride accumulation in the myocardia of dogs with chronic MR and then attempted to enhance myocardial metabolism by chronic administration of the peroxisome proliferator-activated receptor (PPAR)-gamma agonist rosiglitazone.
View Article and Find Full Text PDFMetabolism transfers energy from substrates to ATP. As a "metabolic omnivore," the normal heart adapts to changes in the environment by switching from one substrate to another. We propose that this flexibility is lost in the maladapted, diseased heart.
View Article and Find Full Text PDFBackground: There have been increasing reports of cardiac improvement in heart failure patients supported by left ventricular assist devices (LVADs i.e.), including a number of patients who have tolerated removal of the device without the benefit of cardiac transplant.
View Article and Find Full Text PDFMitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2004
Hypobaric hypoxia induces right ventricular hypertrophy. The relative contribution of pulmonary hypertension, decreased arterial oxygen, and neuroendocrine stimulation to the transcriptional profile of hypoxia-induced right ventricular hypertrophy is unknown. Whereas both ventricles are exposed to hypoxia and neuroendocrine stimulation, only the right ventricle is exposed to increased load.
View Article and Find Full Text PDFBackground: Mechanical unloading of the heart results in atrophic remodeling. In skeletal muscle, atrophy is associated with inactivation of the mammalian target of rapamycin (mTOR) pathway and upregulation of critical components of the ubiquitin proteosome proteolytic (UPP) pathway. The hypothesis is that mechanical unloading of the mammalian heart has differential effects on pathways of protein synthesis and degradation.
View Article and Find Full Text PDFBackground: Investigations involving biopsies of human cardiac tissue often assume that myocardial samples from a specific location are representative of the entire heart.
Hypothesis: There are significant regional differences in gene expression in the heart.
Methods: We used two models.
Background: Left ventricular assist device (LVAD) support of the failing human heart improves myocyte function and increases cell survival. One potential mechanism underlying this phenomenon is activation of the protein kinase B (PKB)/Akt/glycogen synthase kinase-3beta (GSK-3beta) survival pathway.
Methods And Results: Left ventricular tissue was obtained both at the time of implantation and explantation of the LVAD (n = 11).
Biochem Biophys Res Commun
April 2003
Cardiac hypertrophy and atrophy increase expression of fetal iso-genes. A common factor is a decrease in cellular oxygen tension. To test the hypothesis that hypoxia changes cardiac MHC iso-gene expression Wistar rats were exposed to 24 and 48 h of hypobaric hypoxia (11% oxygen) and mRNA was isolated from the left ventricle.
View Article and Find Full Text PDFCardiomyocytes of the failing heart undergo profound phenotypic and structural changes that are accompanied by variations in the genetic program and profile of calcium homeostatic proteins. The underlying mechanisms for these changes remain unclear. Because the mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) is expressed in the heart, we reasoned that STC1 might play a role in the adaptive-maladaptive processes that lead to the heart failure phenotype.
View Article and Find Full Text PDF