Publications by authors named "Razan N Alnahhas"

Heteroresistance can allow otherwise drug-susceptible bacteria to survive and resume growth after antibiotic exposure. This temporary form of antibiotic tolerance can be caused by the upregulation of stress response genes or a decrease in cell growth rate. However, it is not clear how expression of multiple genes contributes to the tolerance phenotype.

View Article and Find Full Text PDF

One snapshot of the peer review process for "The master regulator OxyR orchestrates bacterial oxidative stress response genes in space and time" (Choudhary et al., 2024)..

View Article and Find Full Text PDF

One challenge in synthetic biology is the tuning of regulatory components within gene circuits to elicit a specific behavior. This challenge becomes more difficult in synthetic microbial consortia since each strain's circuit must function at the intracellular level and their combination must operate at the population level. Here we demonstrate that circuit dynamics can be tuned in synthetic consortia through the manipulation of strain fractions within the community.

View Article and Find Full Text PDF

Spatial structure within microbial communities can provide nearly limitless opportunities for social interactions and are an important driver for evolution. As metabolites are often molecular signals, metabolite diffusion within microbial communities can affect the composition and dynamics of the community in a manner that can be challenging to deconstruct. We used encapsulation of a synthetic microbial community within microdroplets to investigate the effects of spatial structure and metabolite diffusion on population dynamics and to examine the effects of cheating by one member of the community.

View Article and Find Full Text PDF

Spatial structure within microbial communities can provide nearly limitless opportunities for social interactions and are an important driver for evolution. As metabolites are often molecular signals, metabolite diffusion within microbial communities can affect the composition and dynamics of the community in a manner that can be challenging to deconstruct. We used encapsulation of a synthetic microbial community within microdroplets to investigate the effects of spatial structure and metabolite diffusion on population dynamics and to examine the effects of cheating by one member of the community.

View Article and Find Full Text PDF

Stress response mechanisms can allow bacteria to survive a myriad of challenges, including nutrient changes, antibiotic encounters, and antagonistic interactions with other microbes. Expression of these stress response pathways, in addition to other cell features such as growth rate and metabolic state, can be heterogeneous across cells and over time. Collectively, these single-cell-level phenotypes contribute to an overall population-level response to stress.

View Article and Find Full Text PDF

Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.

View Article and Find Full Text PDF

As synthetic biocircuits become more complex, distributing computations within multi-strain microbial consortia becomes increasingly beneficial. However, designing distributed circuits that respond predictably to variation in consortium composition remains a challenge. Here we develop a two-strain gene circuit that senses and responds to which strain is in the majority.

View Article and Find Full Text PDF

Synthetic microbial consortia have an advantage over isogenic synthetic microbes because they can apportion biochemical and regulatory tasks among the strains. However, it is difficult to coordinate gene expression in spatially extended consortia because the range of signaling molecules is limited by diffusion. Here, we show that spatio-temporal coordination of gene expression can be achieved even when the spatial extent of the consortium is much greater than the diffusion distance of the signaling molecules.

View Article and Find Full Text PDF

Synthetic microbial consortia consist of two or more engineered strains that grow together and share the same resources. When intercellular signaling pathways are included in the engineered strains, close proximity of the microbes can generate complex dynamic behaviors that are difficult to obtain using a single strain. However, when a consortium is not cultured in a well-mixed environment the constituent strains passively compete for space as they grow and divide, complicating cell-cell signaling.

View Article and Find Full Text PDF

Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli.

View Article and Find Full Text PDF

Until recently, evolutionary questions surrounding the nature of the genetic code have been mostly limited to the realm of conjecture, modeling, and simulation due to the difficulty of altering this fundamental property of living organisms. Concerted genome and protein engineering efforts now make it possible to experimentally study the impact of alternative genetic codes on the evolution of biological systems. We explored how Escherichia coli strains that incorporate a 21st nonstandard amino acid (nsAA) at the recoded amber (TAG) stop codon evolve resistance to the antibiotic rifampicin.

View Article and Find Full Text PDF

The Registry of Standard Biological Parts only accepts genetic parts compatible with the RFC 10 BioBrick format. This combined assembly and submission standard requires that four unique restriction enzyme sites must not occur in the DNA sequence encoding a part. We present evidence that this requirement places a nontrivial burden on iGEM teams developing large and novel parts.

View Article and Find Full Text PDF

The widespread use of caffeine (1,3,7-trimethylxanthine) and other methylxanthines in beverages and pharmaceuticals has led to significant environmental pollution. We have developed a portable caffeine degradation operon by refactoring the alkylxanthine degradation (Alx) gene cluster from Pseudomonas putida CBB5 to function in Escherichia coli. In the process, we discovered that adding a glutathione S-transferase from Janthinobacterium sp.

View Article and Find Full Text PDF