Advancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir/(Co,Fe)-OH/MI).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2024
J Biochem Mol Toxicol
September 2024
3,5,7-Trihydroxy-2-phenylchromen-4-one (THF) possesses a diverse range of pharmacological activities. Evidence suggests that THF exerts anticancer activity by distinct mechanisms of action. This study explores the anticancer potential of THF in human lung (A549) and skin (A431) cancer cells by employing different antiproliferative assays.
View Article and Find Full Text PDFMol Carcinog
September 2024
Flavonoids, constituting the most extensive category of polyphenols, founds in a variety of plants and comprise over 9000 compounds. Diosmetin, O-methylated flavone (3',5,7-trihydroxy-4'-methoxyflavone) of flavonoid aglycone diosmin have witnessed a significant surge in recent years. Many studies showed that flavonoids induced cytotoxicity in different organ specific cancer types.
View Article and Find Full Text PDFMicromachines (Basel)
May 2024
Hydrazine is considered a powerful reducing agent and catalyst, showing diverse applications in agricultural industries, toxic degradation research, and wastewater management. Additionally, hydrazine can trigger some specific reactions when combined with suitable oxidants. Due to its highly polar nature, hydrazine can easily dissolve in alcohol, water, and various other polar solvents.
View Article and Find Full Text PDFA highly flexible, tunable morphology membrane with excellent thermal stability and ionic conductivity can endow lithium metal batteries with high power density and reduced dendrite growth. Herein, a porous Polyurethane (PU) membrane with an adjustable morphology was prepared by a simple nonsolvent-induced phase separation technique. The precise control of the final morphology of PU membranes can be achieved through appropriate selection of a nonsolvent, resulting a range of pore structures that vary from finger-like voids to sponge-like pores.
View Article and Find Full Text PDFRecently, carbon neutrality has been promoted as a potentially practical solution to global CO emissions and increasing energy-consumption challenges. Many attempts have been made to remove CO from the environment to address climate change and rising sea levels owing to anthropogenic CO emissions. Herein, membrane technology is proposed as a suitable solution for carbon neutrality.
View Article and Find Full Text PDFInnovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N) to ammonia (NH) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH production, electrochemical N reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCoS@MnO heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment.
View Article and Find Full Text PDFA new strategy that can effectively increase the nitrogen reduction reaction performance of catalysts is proposed and verified by tuning the coordination number of metal atoms. It is found that the intrinsic activity of Mn atoms in the manganese borides (MnB) increases in tandem with their coordination number with B atoms. Electron-deficient boron atoms are capable of accepting electrons from Mn atoms, which enhances the adsorption of N on the Mn catalytic sites (*) and the hydrogenation of N to form *NNH intermediates.
View Article and Find Full Text PDFOveryielding, the high productivity of multispecies plant communities, is commonly seen as the result of plant genetic diversity. Here we demonstrate that biodiversity-ecosystem functioning relationships can emerge in clonal plant populations through interaction with microorganisms. Using a model clonal plant species, we found that exposure to volatiles of certain microorganisms led to divergent plant phenotypes.
View Article and Find Full Text PDFAnode materials with high-rate performances and good electrochemical stabilities are urgently required for the grid-scale application of lithium-ion batteries (LIBs). Theoretically, transition metal borides are desirable candidates because of their appropriate working potentials and good conductivities. However, the reported metal borides exhibit poor performances owing to their lack of favorable Li storage sites and poor structural stabilities during long-term charging/discharging.
View Article and Find Full Text PDFFlavonoids are among the largest groups of secondary metabolites. Studies suggest that dietary intake of flavonoids reduces the risk of cancer. 3,5,7-trihydroxyflavone (THF) belongs to the flavone class of flavonoids and potentially inhibits the growth of many cancers; however, it is unexplored in prostate cancer.
View Article and Find Full Text PDFIn this study, a highly air stable and eco-friendly methyl ammonium bismuth iodide (MA Bi I ) perovskite-like material has been prepared. After physiochemical characterizations, the synthesized MA Bi I was utilized as photo-catalyst towards hydrogen production. It is important to design and synthesize lead (Pb)-free perovskite-like material (MA Bi I ) for photo-catalytic hydrogen-production applications.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) produced by soil bacteria have been shown to exert plant pathogen biocontrol potential owing to their strong antimicrobial activity. While the impact of VOCs on soil microbial ecology is well established, their effect on plant pathogen evolution is yet poorly understood. Here we experimentally investigated how plant-pathogenic Ralstonia solanacearum bacterium adapts to VOC-mixture produced by a biocontrol Bacillus amyloliquefaciens T-5 bacterium and how these adaptations might affect its virulence.
View Article and Find Full Text PDFThe advancement of metal-catalyzed copolymers is a formidable challenge for achieving distinct catalytic properties to compete with existing plastic polymers in industrial commodities. Herein, we reveal the roles of electronic and steric environments in the thermodynamic preference of microstructures in ethylene/divinyl formal (DVF) co-polymerization using a Pd catalyst under mild conditions to accommodate the respective industrial applicabilities. The insertion products of DVF result in the alteration of the steric crowding, ultimately favoring the efficient formation of cyclic units having potential applications in the manufacture of high-strength fibers.
View Article and Find Full Text PDFElectrolyte modulation and electrode structure design are two common strategies to suppress dendrites growth on Li metal anode. In this work, a self-adaptive electrode construction method to suppress Li dendrites growth is reported, which merges the merits of electrolyte modulation and electrode structure design strategies. In detail, negatively charged titania nanosheets with densely packed nanopores on them are prepared.
View Article and Find Full Text PDFSynthesis of nanomaterials with specific morphology is an essential aspect for the optimisation of its properties and applications. The application of nanomaterials is being discussed in a wide range of areas, one of which is directly relevant to the environment through photocatalysis. To produce an effective photocatalyst for environmental applications, morphology plays an important role as it affects the surface area, interfaces, crystal facets and active sites, which ultimately affects efficiency.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries are one of the emerging candidates for energy storage systems due to their high theoretical energy density and the abundance/nontoxicity/low cost of sulfur. Compared with conventional lithium-ion batteries, multiple new challenges have been brought into this advanced battery system, such as polysulfide shuttling in conventional polyolefin separators and undesired lithium dendrite formation of the Li metal anode. These issues severely affect the cell performance and impede their practical applications.
View Article and Find Full Text PDFRice ( L.) is a major cereal and staple food crop worldwide, and its growth and production are affected by several fungal and bacterial phytopathogens. Bacterial blight (BB) is one of the world's most devastating rice diseases, caused by pv.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
Recently, the design and fabrication of lead (Pb)-free perovskite or perovskite-like materials have received great interest for the development of perovskite solar cells (PSCs). Manganese (Mn) is a less toxic element, which may be an alternative to Pb. In this work, we explored the role of NH(CH)NHMnCl perovskite as a light absorber layer via SCAPS-1D.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2022
The boiling crisis or critical heat flux (CHF) is a very critical constraint for any heat-flux-controlled boiling system. The existing methods (physical models and empirical correlations) offer a specific interpretation of the boiling phenomenon, as many of these correlations are considerably influenced by operational variables and surface morphologies. A generalized correlation is virtually unavailable.
View Article and Find Full Text PDF