Androgen signalling, through the transcription factor androgen receptor (AR), is vital to all stages of prostate development and most prostate cancer progression. AR signalling controls differentiation, morphogenesis, and function of the prostate. It also drives proliferation and survival in prostate cancer cells as the tumour progresses; given this importance, it is the main therapeutic target for disseminated disease.
View Article and Find Full Text PDFProstate cancer (PCa) is the second most common cause of male cancer-related death worldwide. The gold standard of treatment for advanced PCa is androgen deprivation therapy (ADT). However, eventual failure of ADT is common and leads to lethal metastatic castration-resistant PCa.
View Article and Find Full Text PDFThe androgen receptor (AR) is a ligand-activated transcription factor belonging to the nuclear receptor (NR) superfamily. As with other members of the NR family, transcriptional activity of the AR is regulated by interactions with coregulatory proteins, which either enhance (coactivators) or repress (corepressors) its transcriptional activity. AR associated coregulators are functionally diverse, but a large fraction are epigenetic histone and chromatin modifiers.
View Article and Find Full Text PDFPotent therapeutic inhibition of the androgen receptor (AR) in prostate adenocarcinoma can lead to the emergence of neuroendocrine prostate cancer (NEPC), a phenomenon associated with enhanced cell plasticity. Here, we show that microRNA-194 (miR-194) is a regulator of epithelial-neuroendocrine transdifferentiation. In clinical prostate cancer samples, miR-194 expression and activity were elevated in NEPC and inversely correlated with AR signaling.
View Article and Find Full Text PDFThe androgen receptor (AR) is a ligand-activated transcription factor that drives prostate cancer. Since therapies that target the AR are the mainstay treatment for men with metastatic disease, it is essential to understand the molecular mechanisms underlying oncogenic AR signaling in the prostate. miRNAs are small, non-coding regulators of gene expression that play a key role in prostate cancer and are increasingly recognized as targets or modulators of the AR signaling axis.
View Article and Find Full Text PDFSerum levels of miR-194 have been reported to predict prostate cancer recurrence after surgery, but its functional contributions to this disease have not been studied. Herein, it is demonstrated that miR-194 is a driver of prostate cancer metastasis. Prostate tissue levels of miR-194 were associated with disease aggressiveness and poor outcome.
View Article and Find Full Text PDFAntioxidant enzymes can contribute to disease susceptibility or determine response to therapy in individuals with malaria. Genetic variations due to polymorphisms in host genes encoding antioxidant enzymes such as glutathione S-transferases-theta, mu, pi (GSTT, GSTM, GSTP), superoxide dismutases (SOD) and catalase (CAT), may therefore, influence inter-individual response to malaria pathology and propensity of infection caused by Plasmodium vivax (Pv) and Plasmodium falciparum (Pf). Therefore, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing, we investigated the association of deletions of GSTT1 and GSTM1, single nucleotide polymorphisms (SNPs) of GSTP1 (rs1695), SOD1 (rs2234694), SOD2 (rs4880, rs1141718), SOD3 (rs2536512) and CAT (rs1001179) in individuals infected with Pf (n = 100) and Pv (n = 100) against healthy controls (n = 150).
View Article and Find Full Text PDF