Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers.
View Article and Find Full Text PDFPicornavirus replication is known to cause extensive remodeling of Golgi and endoplasmic reticulum membranes, and a number of the host proteins involved in the viral replication complex have been identified, including oxysterol binding protein (OSBP) and phosphatidylinositol 4-kinase III beta (PI4KB). Since both OSBP and PI4KB are substrates for protein kinase D (PKD) and PKD is known to be involved in the control of Golgi membrane vesicular and lipid transport, we hypothesized that PKD played a role in viral replication. We present multiple lines of evidence in support of this hypothesis.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2016
The autotaxin-lysophosphatidic acid (ATX-LPA) axis has been implicated in several disease conditions including inflammation, fibrosis and cancer. This makes ATX an attractive drug target and its inhibition may lead to useful therapeutic agents. Through a high throughput screen (HTS) we identified a series of small molecule inhibitors of ATX which have subsequently been optimized for potency, selectivity and developability properties.
View Article and Find Full Text PDFInhibitors of the aldo-keto reductase enzyme AKR1C3 are of interest as potential drugs for leukemia and hormone-related cancers. A series of non-carboxylate morpholino(phenylpiperazin-1-yl)methanones were prepared by palladium-catalysed coupling of substituted phenyl or pyridyl bromides with the known morpholino(piperazin-1-yl)methanone, and shown to be potent (IC50∼100nM) and very isoform-selective inhibitors of AKR1C3. Lipophilic electron-withdrawing substituents on the phenyl ring were positive for activity, as was an H-bond acceptor on the other terminal ring, and the ketone moiety (as a urea) was essential.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common malignant brain tumor, which, despite combined modality treatment, reoccurs and is invariably fatal for affected patients. Recently, a member of the serine/threonine protein kinase D (PRKD) family, PRKD2, was shown to be a potent mediator of glioblastoma growth. Here we studied the role of PRKD2 in U87MG glioblastoma cell migration and invasion in response to sphingosine-1-phosphate (S1P), an activator of PRKD2 and a GBM mitogen.
View Article and Find Full Text PDFHigh expression of the aldo-keto reductase enzyme AKR1C3 in the human prostate and breast has implicated it in the development and progression of leukemias and of prostate and breast cancers. Inhibitors are thus of interest as potential drugs. Most inhibitors of AKR1C3 are carboxylic acids, whose transport into cells is likely dominated by carrier-mediated processes.
View Article and Find Full Text PDFA high-throughput screen identified 3-(3,4-dihydroisoquinolin-2(1H)-ylsulfonyl)benzoic acid as a novel, highly potent (low nM), and isoform-selective (1500-fold) inhibitor of aldo-keto reductase AKR1C3: a target of interest in both breast and prostate cancer. Crystal structure studies showed that the carboxylate group occupies the oxyanion hole in the enzyme, while the sulfonamide provides the correct twist to allow the dihydroisoquinoline to bind in an adjacent hydrophobic pocket. SAR studies around this lead showed that the positioning of the carboxylate was critical, although it could be substituted by acid isosteres and amides.
View Article and Find Full Text PDFStructure-based design was applied to the optimization of a series of 2-(quinazolin-2-yl)phenols to generate potent and selective ATP-competitive inhibitors of the DNA damage response signaling enzyme checkpoint kinase 2 (CHK2). Structure-activity relationships for multiple substituent positions were optimized separately and in combination leading to the 2-(quinazolin-2-yl)phenol 46 (IC(50) 3 nM) with good selectivity for CHK2 against CHK1 and a wider panel of kinases and with promising in vitro ADMET properties. Off-target activity at hERG ion channels shown by the core scaffold was successfully reduced by the addition of peripheral polar substitution.
View Article and Find Full Text PDFVEGF (vascular endothelial growth factor) plays an essential role in angiogenesis during development and in disease largely mediated by signalling events initiated by binding of VEGF to its receptor, VEGFR2 (VEGF receptor 2)/KDR (kinase insert domain receptor). Recent studies indicate that VEGF activates PKD (protein kinase D) in endothelial cells to regulate a variety of cellular functions, including signalling events, proliferation, migration and angiogenesis. To better understand the role of PKD in VEGF-mediated endothelial function, we characterized the effects of a novel pyrazine benzamide PKD inhibitor CRT5 in HUVECs (human umbilical vein endothelial cells).
View Article and Find Full Text PDFProtein kinase D (PKD) family members are increasingly implicated in multiple normal and abnormal biological functions, including signaling pathways that promote mitogenesis in pancreatic cancer. However, nothing is known about the effects of targeting PKD in pancreatic cancer. Our PKD inhibitor discovery program identified CRT0066101 as a specific inhibitor of all PKD isoforms.
View Article and Find Full Text PDFThis work describes the preparation of approximately 13,000 compounds for rapid identification of hits in high-throughput screening (HTS). These compounds were designed as potential serine/threonine or tyrosine kinase inhibitors. The library consists of various scaffolds, e.
View Article and Find Full Text PDFThe Garner aldehyde-derived methylene alkene 5 and the corresponding benzyloxycarbonyl compound 25 undergo hydroboration with 9-BBN-H followed by palladium-catalyzed Suzuki coupling reactions with aryl and vinyl halides. After one-pot hydrolysis-oxidation, a range of known and novel nonproteinogenic amino acids were isolated as their N-protected derivatives. These novel organoborane homoalanine anion equivalents are generated and transformed under mild conditions and with wide functional group tolerance: electron-rich and -poor aromatic iodides and bromides (and a vinyl bromide) all undergo efficient Suzuki coupling.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2002
A versatile route for the synthesis of homochiral alpha-ketoamide analogues of amino acids is described. Incorporation of this functionality into peptide sequences using either solution or solid-phase chemistry resulted in potent inhibitors of the Hepatitis C Virus NS3 proteinase.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2001
Peptides based upon the non-prime side residues of the NS4A-4B cleavage site of hepatitis C virus (HCV) NS3-4A proteinase containing an alpha-ketoamide moiety in place of the scissile amide bond are potent inhibitors of this enzyme.
View Article and Find Full Text PDFThe lantibiotics are a class of highly posttranslationally modified small peptide antibiotics containing numerous lanthionine and dehydroamino acid residues. We have prepared peptides containing multiple dehydroamino acids and cysteine residues in order to probe the biomimetic synthesis of the lantibiotics from their precursor peptides. A novel synthetic methodology was developed to allow the synthesis of multiple dehydroamino acid containing peptides.
View Article and Find Full Text PDFAntivir Chem Chemother
September 1999
Hepatitis C virus (HCV) is the cause of the majority of transfusion-associated hepatitis and a significant proportion of community-acquired hepatitis worldwide. Infection by HCV frequently leads to persistent infections that result in a range of clinical conditions including an asymptomatic carrier state, severe chronic active hepatitis, cirrhosis and, in some cases, hepatocellular carcinoma. The HCV genome consists of a single-stranded, positive sense RNA containing an open reading frame of approximately 9060 nucleotides.
View Article and Find Full Text PDF