Publications by authors named "Rayna M Bauzo"

Tobacco addiction is characterized by a lack of control over smoking and relapse after periods of abstinence. Smoking cessation leads to a dysphoric state that contributes to relapse to smoking. After the acute withdrawal phase, exposure to stressors increases the risk for relapse.

View Article and Find Full Text PDF

Extrasynaptic glutamate has been shown to regulate dopamine function in the mesocorticolimbic pathway, which plays an important role in the behavioral pharmacology of psychostimulants. Basal levels of glutamate are primarily regulated by the cystine-glutamate transporter and provide glutamatergic tone on extrasynaptic glutamate receptors. The present study examined the effects of a cystine-glutamate transporter enhancer on the neurochemical and behavioral effects of cocaine and amphetamine in nonhuman primates.

View Article and Find Full Text PDF

Smoking is one of the leading preventable causes of disease, disability, and death in the USA and leads to more than 400,000 preventable deaths per year. Nicotine is the major alkaloid present in tobacco smoke, and many of the negative effects of smoking are attributed to nicotine. Nicotine is not only the addictive component of tobacco smoke, but also highly associated with carcinogenesis and induces oxidative stress.

View Article and Find Full Text PDF

Tobacco addiction is one of the leading causes of preventable death worldwide. Despite the negative health outcomes of tobacco use and a desire to quit, there is a low success rate of maintaining abstinence. Nicotine, the main psychoactive component of tobacco smoke, is mildly rewarding and maintains smoking behavior.

View Article and Find Full Text PDF

These studies investigated if pre-exposure to tobacco smoke affects the locomotor response to tobacco smoke, nicotine, and amphetamine in adult rats. The rats were habituated to an open field for 3-4 days and then exposed to tobacco smoke for 2h/day for 13-14 days. The effect of exposure to tobacco smoke on locomotor activity was investigated after 1, 7, and 14 days of smoke exposure and after one 2-hour exposure session that followed a 3-week off period.

View Article and Find Full Text PDF

Brain disorders and environmental factors can affect neurogenesis and gliogenesis in the hippocampus. These studies investigated the effects of chronic exposure to tobacco smoke on progenitor cell proliferation and the survival and phenotype of new cells in the dentate gyrus of adolescent rats. The rats were exposed to tobacco smoke for 4h/day for 14 days.

View Article and Find Full Text PDF

The melanocortin system is well recognized to be involved in the regulation of food intake, body weight, and energy homeostasis. To probe the role of the MC(3) in the regulation of food intake, JRH322-18 a mixed MC(3) partial agonist/antagonist and MC(4) agonist tetrapeptide was examined in wild type (WT) and melanocortin 4 receptor (MC(4)) knockout mice and shown to reduce food intake in both models. In the wild type mice, 2.

View Article and Find Full Text PDF

Epidemiological studies indicate that parental smoking increases the risk for smoking in children. However, the underlying mechanisms by which parental smoking increases the risk for smoking are not known. The aim of these studies was to investigate if preadolescent tobacco smoke exposure, postnatal days 21-35, affects the rewarding effects of nicotine and nicotine withdrawal in adult rats.

View Article and Find Full Text PDF

Recent evidence indicates that group II metabotropic glutamate receptors (mGluR2 and mGluR3) may play a role in the pathology of cocaine addiction. The purpose of the current study was to determine the effects of the mGluR2/3 agonist, LY379268, on cocaine-induced changes in DA neurochemistry in nonhuman primates. Furthermore, the current study aimed to determine if changes in DA neurochemistry would correlate with LY379268-induced changes in the behavioral effects of cocaine.

View Article and Find Full Text PDF

Rationale: The interoceptive and reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) are similar to those of psychostimulants, but the role of dopamine in the behavioral effects of MDMA is not well documented, especially in primates.

Objective: The aim of this study was to assess the role of dopamine in the behavioral effects of MDMA in two nonhuman primate species.

Methods: The behavioral effects of MDMA, with and without serotonergic or dopaminergic pretreatments, were studied in squirrel monkeys trained to respond under a fixed-interval schedule of stimulus termination; effects on caudate dopamine levels were studied in a separate group of squirrel monkeys using in vivo microdialysis.

View Article and Find Full Text PDF

Background: Cocaine and methamphetamine (METH) are two commonly abused drugs that have behavioral-stimulant properties. These stimulant effects are partially mediated by the dopaminergic system. Recent evidence has suggested that the histamine H(3) receptor (H(3)R) may modulate the release of dopamine induced by METH.

View Article and Find Full Text PDF

The melanocortin system is involved in the regulation of a diverse number of physiologically important pathways including pigmentation, feeding behavior, weight and energy homeostasis, inflammation, and sexual function. All the endogenous melanocortin agonist ligands possess the conserved His-Phe-Arg-Trp tetrapeptide sequence that is postulated to be important for melanocortin receptor molecular recognition and stimulation. Previous studies by our laboratory resulted in the discovery that increasing alkyl chain length at the N-terminal "capping" region of the His-dPhe-Arg-Trp-NH(2) tetrapeptide resulted in a 100-fold increased melanocortin receptor agonist potency.

View Article and Find Full Text PDF

The agouti-related protein (AGRP) is an endogenous antagonist of the centrally expressed melanocortin receptors. The melanocortin-4 receptor (MC4R) is involved in energy homeostasis, food intake, sexual function, and obesity. The endogenous hAGRP protein is 132 amino acids in length, possesses five disulfide bridges at the C-terminus of the molecule, and is expressed in the hypothalamus of the brain.

View Article and Find Full Text PDF

Agouti-related protein (AGRP) is one of two known naturally occurring antagonists of G-protein coupled receptors. AGRP is synthesized in the brain and is an antagonist of the melanocortin-3 and -4 receptors (MC3R, MC4R). These three proteins are involved in the regulation of energy homeostasis and obesity in both mice and humans.

View Article and Find Full Text PDF

Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors.

View Article and Find Full Text PDF

Agouti-related protein (AGRP) is one of only two naturally known antagonists of G-protein-coupled receptors (GPCRs) identified to date. Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these melanocortin receptors.

View Article and Find Full Text PDF

A series of N-substituted glycine oligomers (peptoids) and peptide-peptoid hybrids were synthesized based on the Ac-His-Phe-Arg-Trp-NH(2) tetrapeptide template. The compounds were pharmacologically characterized at the mouse melanocortin receptors (MC1R, MC3R-MC5R) for agonist activity.

View Article and Find Full Text PDF

A series of urea compounds based on the tripeptide Phe-Trp-Lys were synthesized and pharmacologically characterized at the mouse melanocortin receptors. The results include identification of novel melanocortin receptor agonists with potencies ranging from nanomolar to micromolar.

View Article and Find Full Text PDF

The agouti-related protein (AGRP) is an endogenous antagonist of the brain melanocortin receptors (MC3R and MC4R) and is believed to be involved in feeding behavior and energy homeostasis. Previous results identified that the human AGRP decapeptide Yc[CRFFNAFC]Y binds to the MC3R and MC4R and acts as an antagonist at the MC4R but not at the MC3R. We have synthesized the amidated version of this decapeptide as well as performed elongation studies at both the N-and C-terminus of the monocyclic hAGRP(109-118) peptide.

View Article and Find Full Text PDF

The melanocortin system is implicated in multiple physiological pathways including pigmentation, inflammation, erectile function, feeding behavior, energy homeostasis, weight homeostasis, and exocrine gland function, just to list a few. The endogenous agonists for the melanocortin receptors include the gene transcripts derived from the proopiomelanocortin gene and include the core tetrapeptide His-Phe-Arg-Trp sequence postulated to be important for melanocortin receptor selectivity and stimulation. Posttranslational processing of the proopiomelanocortin derived agonists results in the N-terminal acetylation and C-terminal amidation of alpha-melanocyte stimulation hormone (alpha-MSH).

View Article and Find Full Text PDF

The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) located in the brain are implicated as participating in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH).

View Article and Find Full Text PDF

The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The endogenous melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," postulated to be important for melanocortin receptor molecular recognition and stimulation.

View Article and Find Full Text PDF

The solid-phase synthesis of a novel thioether cyclized peptidomimetic scaffold, displaying functionality at the i to i + 3 positions, is reported. The thioether bridge is formed on-bead by an intramolecular reaction between a chloroacetylated reduced peptide bond and the free thiol from a cysteine. The crude products were obtained in moderate to very high purity.

View Article and Find Full Text PDF

The melanocortin pathway is an important participant in skin pigmentation, steroidogenesis, obesity, energy homeostasis and exocrine gland function. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," and it has been well-documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency.

View Article and Find Full Text PDF

The melanocortin pathway is an important participant in obesity and energy homeostasis. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp", and it has been well documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: