In developing countries, the use of simple and cost-efficient molecular technology is crucial for genetic characterization of local animal resources and better development of conservation strategies. The genotyping by sequencing (GBS) technique, also called restriction enzyme- reduced representational sequencing, is an efficient, cost-effective method for simultaneous discovery and genotyping of many markers. In the present study, we applied a two-enzyme GBS protocol (PstI/MspI) to discover and genotype SNP markers among 197 Tunisian sheep samples.
View Article and Find Full Text PDFBackground: Genotyping-by-sequencing (GBS) is becoming an attractive alternative to array-based methods for genotyping individuals for a large number of single nucleotide polymorphisms (SNPs). Costs can be lowered by reducing the mean sequencing depth, but this results in genotype calls of lower quality. A common analysis strategy is to filter SNPs to just those with sufficient depth, thereby greatly reducing the number of SNPs available.
View Article and Find Full Text PDFAccurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs) are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies.
View Article and Find Full Text PDFPurpose: Cataracts are an important cause of blindness in humans but there are few large animal models available. One of these animal models is Ovine Heritable Cataract, a bilateral cortical cataract which develops after birth. This cataract has been used as a model for human cataracts in drug trials, but the gene responsible for the cataract trait is unknown.
View Article and Find Full Text PDFComparative maps between ruminant species and humans are increasingly important tools for the discovery of genes underlying economically important traits. In this article we present a primary linkage map of the deer genome derived from an interspecies hybrid between red deer (Cervus elaphus) and Père David's deer (Elaphurus davidianus). The map is approximately 2500 cM long and contains >600 markers including both evolutionary conserved type I markers and highly polymorphic type II markers (microsatellites).
View Article and Find Full Text PDF