Individual neurons of the hypothalamic suprachiasmatic nuclei (SCN) contain an intracellular molecular clock that drives these neurons to exhibit day-night variation in excitability. The neuropeptide vasoactive intestinal polypeptide (VIP) and its cognate receptor, VPAC, are synthesized by SCN neurons and this intercellular VIP-VPAC receptor signal facilitates coordination of SCN neuronal activity and timekeeping. How the loss of VPAC receptor signalling affects the electrophysiological properties and states of SCN neurons as well as their responses to excitatory inputs is unclear.
View Article and Find Full Text PDFRegular exercise is important for physical and mental health. An underexplored and intriguing property of exercise is its actions on the body's 24 h or circadian rhythms. Molecular clock cells in the brain's suprachiasmatic nuclei (SCN) use electrical and chemical signals to orchestrate their activity and convey time of day information to the rest of the brain and body.
View Article and Find Full Text PDFIndividual neurons in the suprachiasmatic nuclei (SCN) contain an intracellular molecular clock and use intercellular signaling to synchronize their timekeeping activities so that the SCN can coordinate brain physiology and behavior. The neuropeptide vasoactive intestinal polypeptide (VIP) and its VPAC2 receptor form a key component of intercellular signaling systems in the SCN and critically control cellular coupling. Targeted mutations in either the intracellular clock or intercellular neuropeptide signaling mechanisms, such as VIP-VPAC2 signaling, can lead to desynchronization of SCN neuronal clocks and loss of behavioral rhythms.
View Article and Find Full Text PDFTemporal control of brain and behavioral states emerges as a consequence of the interaction between circadian and homeostatic neural circuits. This interaction permits the daily rhythm of sleep and wake, regulated in parallel by circadian cues originating from the suprachiasmatic nuclei (SCN) and arousal-promoting signals arising from the orexin-containing neurons in the tuberal hypothalamus (TH). Intriguingly, the SCN circadian clock can be reset by arousal-promoting stimuli while activation of orexin/hypocretin neurons is believed to be under circadian control, suggesting the existence of a reciprocal relationship.
View Article and Find Full Text PDFVasoactive intestinal polypeptide and its receptor, VPAC(2), play important roles in the functioning of the brain's circadian clock in the suprachiasmatic nuclei (SCN). Mice lacking VPAC(2) receptors (Vipr2(-/-)) show altered circadian rhythms in locomotor behavior, neuronal firing rate, and clock gene expression, however, the nature of molecular oscillations in individual cells is unclear. Here, we used real-time confocal imaging of a destabilized green fluorescent protein (GFP) reporter to track the expression of the core clock gene Per1 in live SCN-containing brain slices from wild-type (WT) and Vipr2(-/-) mice.
View Article and Find Full Text PDFThe suprachiasmatic nucleus (SCN) of the hypothalamus houses the main mammalian circadian clock. This clock is reset by light-dark cues and stimuli that evoke arousal. Photic information is relayed directly to the SCN via the retinohypothalamic tract (RHT) and indirectly via the geniculohypothalamic tract, which originates from retinally innervated cells of the thalamic intergeniculate leaflet (IGL).
View Article and Find Full Text PDF