Screening of a plant-derived natural product library led to the observation of in vitro antileishmanial activity by three bisbenzyltetrahydroisoquinoline alkaloids (1-3) that were purified previously from Thalictrum alpinum. A spectroscopic study of the active compounds was conducted to confirm their identities. Of the compounds tested, northalrugosidine (1) showed the most potent in vitro activity against Leishmania donovani promastigotes (0.
View Article and Find Full Text PDFSemisynthetic 8,8-dialkyldihydroberberines (8,8-DDBs) were found to possess mid- to low-nanomolar potency against Plasmodium falciparum blood-stage parasites, Leishmania donovani intracellular amastigotes, and Trypanosoma brucei brucei bloodstream forms. For example, 8,8-diethyldihydroberberine chloride (5b) exhibited in vitro IC50 values of 77, 100, and 5.3 nM against these three parasites, respectively.
View Article and Find Full Text PDFTreatment of diseases such as African sleeping sickness and leishmaniasis often depends on relatively expensive or toxic drugs, and resistance to current chemotherapeutics is an issue in treating these diseases and malaria. In this study, a new semi-synthetic berberine analogue, 5,6-didehydro-8,8-diethyl-13-oxodihydroberberine chloride (1), showed nanomolar level potency against in vitro models of leishmaniasis, malaria, and trypanosomiasis as well as activity in an in vivo visceral leishmaniasis model. Since the synthetic starting material, berberine hemisulfate, is inexpensive, 8,8-dialkyl-substituted analogues of berberine may lead to a new class of affordable antiprotozoal compounds.
View Article and Find Full Text PDF