Background And Purpose: The aim of this study was to develop and evaluate a prediction model for 2-year overall survival (OS) in stage I-IIIA non-small cell lung cancer (NSCLC) patients who received definitive radiotherapy by considering clinical variables and image features from pre-treatment CT-scans.
Materials And Methods: NSCLC patients who received stereotactic radiotherapy were prospectively collected at the UMCG and split into a training and a hold out test set including 189 and 81 patients, respectively. External validation was performed on 228 NSCLC patients who were treated with radiation or concurrent chemoradiation at the Maastro clinic (Lung1 dataset).
Objective: To develop an automatic COVID-19 Reporting and Data System (CO-RADS)-based classification in a multi-demographic setting.
Methods: This multi-institutional review boards-approved retrospective study included 2720 chest CT scans (mean age, 58 years [range 18-100 years]) from Italian and Russian patients. Three board-certified radiologists from three countries assessed randomly selected subcohorts from each population and provided CO-RADS-based annotations.
The objective of this study is to evaluate the feasibility of a disease-specific deep learning (DL) model based on minimum intensity projection (minIP) for automated emphysema detection in low-dose computed tomography (LDCT) scans. LDCT scans of 240 individuals from a population-based cohort in the Netherlands (ImaLife study, mean age ± SD = 57 ± 6 years) were retrospectively chosen for training and internal validation of the DL model. For independent testing, LDCT scans of 125 individuals from a lung cancer screening cohort in the USA (NLST study, mean age ± SD = 64 ± 5 years) were used.
View Article and Find Full Text PDFObjective: To evaluate the performance of a deep learning-based computer-aided detection (DL-CAD) system in a Chinese low-dose CT (LDCT) lung cancer screening program.
Materials And Methods: One-hundred-and-eighty individuals with a lung nodule on their baseline LDCT lung cancer screening scan were randomly mixed with screenees without nodules in a 1:1 ratio (total: 360 individuals). All scans were assessed by double reading and subsequently processed by an academic DL-CAD system.
The color of particular parts of a flower is often employed as one of the features to differentiate between flower types. Thus, color is also used in flower-image classification. Color labels, such as 'green', 'red', and 'yellow', are used by taxonomists and lay people alike to describe the color of plants.
View Article and Find Full Text PDFDeep learning (DL) has become widely used for medical image segmentation in recent years. However, despite these advances, there are still problems for which DL-based segmentation fails. Recently, some DL approaches had a breakthrough by using anatomical information which is the crucial cue for manual segmentation.
View Article and Find Full Text PDFPurpose: Early detection of lung cancer is of importance since it can increase patients' chances of survival. To detect nodules accurately during screening, radiologists would commonly take the axial, coronal, and sagittal planes into account, rather than solely the axial plane in clinical evaluation. Inspired by clinical work, the paper aims to develop an accurate deep learning framework for nodule detection by a combination of multiple planes.
View Article and Find Full Text PDFBackground And Objective: To investigate the effect of the slab thickness in maximum intensity projections (MIPs) on the candidate detection performance of a deep learning-based computer-aided detection (DL-CAD) system for pulmonary nodule detection in CT scans.
Methods: The public LUNA16 dataset includes 888 CT scans with 1186 nodules annotated by four radiologists. From those scans, MIP images were reconstructed with slab thicknesses of 5 to 50 mm (at 5 mm intervals) and 3 to 13 mm (at 2 mm intervals).
Purpose: Coronary artery calcium (CAC) score has shown to be an accurate predictor of future cardiovascular events. Early detection by CAC scoring might reduce the number of deaths by cardiovascular disease (CVD). Automatically excluding scans which test negative for CAC could significantly reduce the workload of radiologists.
View Article and Find Full Text PDFAccurate pulmonary nodule detection is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodule detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans.
View Article and Find Full Text PDFRecently, in the forensic biometric community, there is a growing interest to compute a metric called "likelihood-ratio" when a pair of biometric specimens is compared using a biometric recognition system. Generally, a biometric recognition system outputs a score and therefore a likelihood-ratio computation method is used to convert the score to a likelihood-ratio. The likelihood-ratio is the probability of the score given the hypothesis of the prosecution, Hp (the two biometric specimens arose from a same source), divided by the probability of the score given the hypothesis of the defense, Hd (the two biometric specimens arose from different sources).
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2014
The increase of the dimensionality of data sets often leads to problems during estimation, which are denoted as the curse of dimensionality. One of the problems of second-order statistics (SOS) estimation in high-dimensional data is that the resulting covariance matrices are not full rank, so their inversion, for example, needed in verification systems based on the likelihood ratio, is an ill-posed problem, known as the singularity problem. A classical solution to this problem is the projection of the data onto a lower dimensional subspace using principle component analysis (PCA) and it is assumed that any further estimation on this dimension-reduced data is free from the effects of the high dimensionality.
View Article and Find Full Text PDFIn a biometric authentication system using protected templates, a pseudonymous identifier is the part of a protected template that can be directly compared. Each compared pair of pseudonymous identifiers results in a decision testing whether both identifiers are derived from the same biometric characteristic. Compared to an unprotected system, most existing biometric template protection methods cause to a certain extent degradation in biometric performance.
View Article and Find Full Text PDF