Publications by authors named "Raymond R Dagastine"

Ether-linked surfactants are widely used in formulations such as liquid soaps, but despite their ubiquity, it is unclear how -ethylene glycol linkers in surfactants, such as sodium lauryl -(ethylene glycol) sulfate (SLEnS), influence micellar packing in the presence of NaCl. In the present work, we probe the structure and hydration of ether linkers in micelles comprising monodisperse SLEnS surfactants using contrast-variation small-angle neutron scattering (CV-SANS) and small-angle X-ray scattering (SAXS). Using SAXS, changes in micellar structure were observed for SLEnS ( = 1, 2, or 3) arising from the extent of ethoxylation.

View Article and Find Full Text PDF

Surfactants provide detergency, foaming, and texture in personal care formulations, yet the micellization of typical industrial primary and cosurfactants is not well understood, particularly in light of the polydisperse nature of commercial surfactants. Synergistic interactions are hypothesized to drive the formation of elongated wormlike self-assemblies in these mixed surfactant systems. Small-angle neutron scattering, rheology, and pendant drop tensiometry are used to examine surface adsorption, viscoelasticity, and self-assembly structure for wormlike micellar formulations comprising cocoamidopropyl betaine, and its two major components laurylamidopropyl betaine and oleylamidopropyl betaine, with sodium alkyl ethoxy sulfates.

View Article and Find Full Text PDF

Total internal reflection microscopy (TIRM) has become a crucial technique for understanding the surface interactions and dynamics of Brownian colloidal particles near a surface. However, for select colloidal systems, experimental limitations associated with TIRM can occlude exploration of nano- and submicrometer colloids dispersed in complex or structured fluids. It should be possible to use Brownian dynamic simulations to quantify, explore, or circumvent these limitations to extend the TIRM technique further.

View Article and Find Full Text PDF

Hypothesis: Interactions across incredibly thin layers of fluids, known as thin films, underpin many important processes involving colloids, such as wetting-dewetting phenomena. Often in these systems, thin films are composed of complex fluids that contain dispersed components, such as spherical micelles, giving rise to oscillatory structural forces due to preferential layering under confinement. Modelling of thin film dynamics involving Derjaguin-Landau-Verwey-Overbeek (DLVO) type forces has been widely reported using the Stokes-Reynolds-Young-Laplace (SRYL) model, and we hypothesize that this theory can be extended to a concentrated micellar system by including an oscillatory structural force term in the disjoining pressure.

View Article and Find Full Text PDF

Size, shape, and chemical properties of nanoparticles are powerful tools to modulate the optical and physicochemical properties of a particle suspension. Despite having many methods to synthesize anisotropic nanoparticles, often there are challenges in terms of controlling the polydispersity, shape, size, or composition of anisotropic nanoparticles. This work has been inspired by the potential for developing a unique pathway to make different shaped monodispersed anisotropic nano- and microparticles with large flexibility in material choice.

View Article and Find Full Text PDF

Selective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with -succinylimidazole, achieving regioselective surface modification of C6-OH, which can be reverted using mild post-treatments.

View Article and Find Full Text PDF

Hypothesis: Interfacial rheology provides insight into the mechanical properties of adsorption layers on liquid-liquid interfaces, which mediates the stability of emulsion droplets. The use of capsule compression at the scale of an emulsion droplet to probe the interfacial rheology may open up the possibility of testing the interfacial rheological properties of droplets with complex histories and extremely small volumes found in many applications.

Experiments: The time dependent interfacial rheological behavior of β-lactoglobulin adsorption layers on an oil/water interface in the native and crosslinked state was extracted using small oscillatory indentation with atomic force microscopy (AFM).

View Article and Find Full Text PDF

The time-dependent behavior of surface-active adsorption layers at the oil/water interface can dictate emulsion behavior at both the micro- and macroscale. In addition, self-healing behavior of the adsorption layer may benefit emulsion stability subject to large deformation under processing or during final application. We explore the behavior of chitosan, a known hydrophilic emulsifier, which forms nanoparticle aggregates when the concentration of acetate buffer exceeds 0.

View Article and Find Full Text PDF

Hydrogels can be formed in a number of different geometries depending upon desired function. However, due to the lack of appropriate models required to interpret experimental data, it remains unclear whether hydrogel microparticles have the same poroelastic properties as hydrogel films made with the same components. We perform numerical simulations to determine the universal force relaxation of a poroelastic hydrogel particle undergoing constant compression by a spherical probe, allowing analysis of experimental measurements of hydrogel particle material properties for the first time.

View Article and Find Full Text PDF

Hypothesis: The role of interfacial coatings in gas transport dynamics in foam coarsening is often difficult to quantify. The complexity of foam coarsening measurements or gas transport measurements between bubbles requires assumptions about the liquid thin film thickness profile in order to explore the effects of interfacial coatings on gas transport. It should be possible to independently quantify the effects from changes in film thickness and interfacial permeability by using both atomic force microscopy and optical microscopy to obtain time snapshots of this dynamic process.

View Article and Find Full Text PDF

The adhesion force and contact angle of gold-capped silica Janus particles and plain silica particles at an air-water interface are studied via colloidal atomic force microscopy. Particles are attached to cantilevers at various orientations, and wetting properties of the gold surface are varied through modification with dodecanethiol. Thiol modification increases the hydrophobicity of the gold surface, thereby increasing the difference between the contact angles of the gold hemisphere and the silica hemisphere and, thus, increasing the degree of amphiphilicity of the Janus particle.

View Article and Find Full Text PDF

The mechanical properties of polyacrylamide (PA) and polydimethylsiloxane (PDMS) microparticle populations have been measured using microaspiration, a recently developed experimental technique. Microaspiration is an augmented version of micropipette aspiration, in which optical microscopy data are obtained as individual soft particles pass through the tip of a micropipette. During microaspiration, the ion current passing through the pipette tip is also measured, and the synchronised optical and current data streams are used to study and quantify mechanical properties.

View Article and Find Full Text PDF

Hypothesis: Linking atomic force microscopy and microfluidics opens up the possibility of probing adhesive interactions between drops in a high-throughput context. A microfluidic device designed to form, and subsequently break-up, chains of drops, where the drop break-up is sensitive to the underlying surface forces between drops, not hydrodynamic drainage forces, would play a key role in developing this link.

Experiments: Both techniques have been used to quantify the forces between oil drops in the presence of complexes formed with anionic surfactant, sodium dodecylsulphate, and neutral, water soluble polymer, poly(vinylpyrrolidone).

View Article and Find Full Text PDF

The dynamic collision of emulsified water drops in the presence of non-ionic surfactants plays a crucial role in many practical applications. Interaction force between water drops coated with non-ionic food grade surfactants is expected to exhibit rich dynamic behavior that is not yet explored. The collision forces between immobilized water drops in canola oil in the presence of a well-known food grade surfactant polyglycerol polyricinoleate (PGPR) are measured at concentrations well below typically used to form stable emulsions.

View Article and Find Full Text PDF

Thin-film composite poly(amide) (PA) membranes have greatly diversified water supplies and food products. However, users would benefit from a control of the electrostatic interactions between the liquid and the net surface charge interface in order to benefit wider application. The ionic selectivity of the 100 nm PA semi-permeable layer is significantly affected by the pH of the solution.

View Article and Find Full Text PDF

The interaction forces between colliding tetradecane drops were measured in the presence of the nonionic surfactant pentaethylene glycol monododecyl ether (CE). The force behavior was measured in the range of premicellar compositions of the nonionic surfactant in various salt solutions and was consistent with the presence of a surface charge even though the surfactant was nonionic in nature. The surface potential of oil drops was found to decrease with an increase in CE concentration.

View Article and Find Full Text PDF

Ion-exchange membranes are composite separation materials increasingly used in a variety of electro-membranes and electrochemical processes. Although promising for solvent reclamation, to date, their main applications are limited to aqueous environments due to physicochemical and microstructural changes of the materials upon exposure to nonaqueous and mixed solvents solutions, affecting long-term stability and separation performance. In the present work, the structural changes of commercial and novel hybrid ion-exchange membranes in mixed methanol/water and ethanol/water solutions are assessed for the first time using ultra- and small-angle neutron scattering techniques.

View Article and Find Full Text PDF

Application of elastic theory to experimental data of capsule and particle compression under-predicts the value of material properties such as the Young's modulus by up to 100% when the effect of the rigid substrate is neglected, as is commonly done in the literature. Results of numerical simulations, spanning the range from thin-shelled capsules to solid particles, are presented in terms of correction factors that account for the substrate. In addition, the scaling relationship between indentation force and displacement is characterised for arbitrary shell thicknesses and indenter radii.

View Article and Find Full Text PDF

Emulsion formulation, solvent extraction and multiphase microfluidics are all examples of processes that require precise control of drop or bubble collision stability. We use a previously validated numerical model to map the exact conditions under which micron-sized drops or bubbles undergo coalescence in the presence of colloidal forces and hydrodynamic effects relevant to Brownian motion and low Reynolds number flows. We demonstrate that detailed understanding of how the equilibrium surface forces vary with film thickness can be applied to make accurate predictions of the outcome of a drop or bubble collision when hydrodynamic effects are negligible.

View Article and Find Full Text PDF

The organized assembly of particles into superstructures is typically governed by specific molecular interactions or external directing factors associated with the particle building blocks, both of which are particle-dependent. These superstructures are of interest to a variety of fields because of their distinct mechanical, electronic, magnetic and optical properties. Here, we establish a facile route to a diverse range of superstructures based on the polyphenol surface-functionalization of micro- and nanoparticles, nanowires, nanosheets, nanocubes and even cells.

View Article and Find Full Text PDF

Nitrogen deprivation (N-deprivation) is a proven strategy for inducing triacylglyceride accumulation in microalgae. However, its effect on the physical properties of cells and subsequently on product recovery processes is relatively unknown. In this study, the effect of N-deprivation on the cell size, cell wall thickness, and mechanical strength of three microalgae was investigated.

View Article and Find Full Text PDF

An experimental protocol has been developed for synthesizing stable core-shell microcapsules using a biopolymer, chitosan, lacking cross-linkable thiol functional groups. In the first step, thiol moieties were introduced into the backbone of chitosan using dl-N-acetylhomocysteine thiolactone (AHT). In the second step, AHT-modified chitosan shelled microcapsules, encapsulating an oil core, were successfully prepared using high intensity 20 kHz ultrasound.

View Article and Find Full Text PDF

Pendant drop tensiometry offers a simple and elegant solution to determining surface and interfacial tension - a central parameter in many colloidal systems including emulsions, foams and wetting phenomena. The technique involves the acquisition of a silhouette of an axisymmetric fluid droplet, and iterative fitting of the Young-Laplace equation that balances gravitational deformation of the drop with the restorative interfacial tension. Since the advent of high-quality digital cameras and desktop computers, this process has been automated with high speed and precision.

View Article and Find Full Text PDF

Structural forces play an important role in the rheology, processing and stability of colloidal systems and complex fluids, with polyelectrolytes representing a key class of structuring colloids. Here, we explore the interactions between soft colloids, in the form of air bubbles, in solutions of monodisperse sodium poly(styrene sulfonate) as a model polyelectrolyte. It is found that by self-consistently modelling the force oscillations due to structuring of the polymer chains along with deformation of the bubbles, it is possible to precisely predict the interaction potential between approaching bubbles.

View Article and Find Full Text PDF

Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass.

View Article and Find Full Text PDF