Publications by authors named "Raymond Pierce"

Introduction: The human blood fluke parasite relies on diverse mechanisms to adapt to its diverse environments and hosts. Epigenetic mechanisms play a central role in gene expression regulation, culminating in such adaptations. Protein arginine methyltransferases (PRMTs) promote posttranslational modifications, modulating the function of histones and non-histone targets.

View Article and Find Full Text PDF

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites' Achilles' heel.

View Article and Find Full Text PDF

Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks.

View Article and Find Full Text PDF

Background: Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential.

View Article and Find Full Text PDF

Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, we chemically optimized our previously reported benzhydroxamate-based inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by the highly potent inhibitor 5o.

View Article and Find Full Text PDF

The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required.

View Article and Find Full Text PDF

Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, which affects over 200 million people worldwide and leads to at least 300,000 deaths every year. In this study, initial screening revealed the triazole-based hydroxamate 2 b (N-hydroxy-1-phenyl-1H-1,2,3-triazole-4-carboxamide) exhibiting potent inhibitory activity toward the novel antiparasitic target Schistosoma mansoni histone deacetylase 8 (smHDAC8) and promising selectivity over the major human HDACs. Subsequent crystallographic studies of the 2 b/smHDAC8 complex revealed key interactions between the inhibitor and the enzyme's active site, thus explaining the unique selectivity profile of the inhibitor.

View Article and Find Full Text PDF

The only drug currently available for treatment of the neglected disease Schistosomiasis is Praziquantel, and the possible emergence of resistance makes research on novel therapeutic agents necessary and urgent. To this end, the targeting of epigenetic enzymes, which regulate the parasitic life cycle, emerged as a promising approach. Due to the strong effects of human sirtuin inhibitors on parasite survival and reproduction, sirtuins were postulated as potential therapeutic targets.

View Article and Find Full Text PDF

Background: The possibility of emergence of praziquantel-resistant Schistosoma parasites and the lack of other effective drugs demand the discovery of new schistosomicidal agents. In this context the study of compounds that target histone-modifying enzymes is extremely promising. Our aim was to investigate the effect of inhibition of EZH2, a histone methyltransferase that is involved in chromatin remodeling processes and gene expression control; we tested different developmental forms of Schistosoma mansoni using GKS343, a selective inhibitor of EZH2 in human cells.

View Article and Find Full Text PDF

Metal-dependent histone deacetylases (HDACs) are key epigenetic regulators that represent promising therapeutic targets for the treatment of numerous human diseases. Yet the currently FDA-approved HDAC inhibitors nonspecifically target at least several of the 11 structurally similar but functionally different HDAC isozymes, which hampers their broad usage in clinical settings. Selective inhibitors targeting single HDAC isozymes are being developed, but precise understanding in molecular terms of their selectivity remains sparse.

View Article and Find Full Text PDF

Schistosomiasis is a neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy relies on mass treatment with only one drug: praziquantel. Based on the 3-chlorobenzothiophene-2-hydroxamic acid J1075, a series of hydroxamic acids with different scaffolds were prepared as potential inhibitors of Schistosoma mansoni histone deacetylase 8 (SmHDAC8). The crystal structures of SmHDAC8 with four inhibitors provided insight into the binding mode and orientation of molecules in the binding pocket as well as the orientation of its flexible amino acid residues.

View Article and Find Full Text PDF

A promising means in the search of new small molecules for the treatment of schistosomiasis (amongst other parasitic ailments) is by targeting the parasitic epigenome. In the present study, a docking based virtual screening procedure using the crystal structure of histone deacetylase 8 from (smHDAC8) was designed. From the developed screening protocol, we were able to identify eight novel -(2,5-dioxopyrrolidin-3-yl)--alkylhydroxamate derivatives as smHDAC8 inhibitors with IC values ranging from 4.

View Article and Find Full Text PDF

Background: Histone deacetylase 8 from Schistosoma mansoni (SmHDAC8) is essential to parasite growth and development within the mammalian host and is under investigation as a target for the development of selective inhibitors as novel schistosomicidal drugs. Although some protein substrates and protein partners of human HDAC8 have been characterized, notably indicating a role in the function of the cohesin complex, nothing is known of the partners and biological function of SmHDAC8.

Methodology/principal Findings: We therefore employed two strategies to characterize the SmHDAC8 interactome.

View Article and Find Full Text PDF

Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has been recently identified as a new potential target for the treatment of schistosomiasis. A series of newly designed and synthesized alkoxyamide-based and hydrazide-based HDAC inhibitors were tested for inhibitory activity against SmHDAC8 and human HDACs 1, 6, and 8. The front runner compounds showed submicromolar activity against SmHDAC8 and modest preference for SmHDAC8 over its human orthologue hHDAC8.

View Article and Find Full Text PDF

In this article, the four coordinators of neglected tropical disease (NTD) drug development projects funded under the European Commission (EC) Framework Programme 7 argue that the EC should reassess their funding strategy to cover the steps necessary to translate a lead compound into a drug candidate for testing in clinical trials, and suggest ways in which this might be achieved.

View Article and Find Full Text PDF

The availability of the genomic data of diverse parasites provides an opportunity to identify new drug candidates against neglected tropical diseases affecting people worldwide. Histone modifying enzymes (HMEs) are potential candidates since they play key roles in the regulation of chromatin modifications, thus globally regulating gene expression. Furthermore, aberrant epigenetic states are often associated with human diseases, leading to great interest in HMEs as therapeutic targets.

View Article and Find Full Text PDF

Background: Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage.

View Article and Find Full Text PDF

Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin) that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L.

View Article and Find Full Text PDF
Article Synopsis
  • Ancestral sequence reconstruction has been utilized to explore evolution-based hypotheses, particularly related to the antimicrobial activities of defensin peptides found in European ticks.
  • These defensins demonstrate effectiveness against various pathogens, including fungi, Gram-negative, and Gram-positive bacteria, although ticks themselves do not transmit these pathogens.
  • The study reconstructed the ancestral defensin sequence from ticks and scorpions and found that while modern tick defensins display a broad antimicrobial spectrum, the ancestral form exhibited only moderate activity against specific microbes, indicating that evolutionary changes contributed to increased defensin effectiveness.
View Article and Find Full Text PDF

Epigenetic mechanisms underlie the morphological transformations and shifts in virulence of eukaryotic pathogens. The targeting of epigenetics-driven cellular programs thus represents an Achilles' heel of human parasites. Today, zinc-dependent histone deacetylases (HDACs) belong to the most explored epigenetic drug targets in eukaryotic parasites.

View Article and Find Full Text PDF

Epigenetic mechanisms have not been characterized in ticks despite their importance as vectors of human and animal diseases worldwide. The objective of this study was to characterize the histones and histone modifying enzymes (HMEs) of the tick vector Ixodes scapularis and their role during Anaplasma phagocytophilum infection. We first identified 5 histones and 34 HMEs in I.

View Article and Find Full Text PDF

Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, a series of new benzohydroxamates were prepared as potent inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by these 3-amidobenzohydroxamates.

View Article and Find Full Text PDF

Chromatin structure in eukaryotes and its modulation by epigenetic mechanisms enable the regulation of the different nuclear processes. Perturbation of epigenetic mechanisms can thus affect the proper functioning of cells, and numerous diseases have been linked to the deregulation of the activity of epigenetic effectors in human. The reversibility of epigenetic mechanisms has allowed the development of "Epigenetic drugs" or "Epidrugs".

View Article and Find Full Text PDF