Publications by authors named "Raymond Macharia"

Cranial foramina are holes within the skull, formed during development, allowing entry and exit of blood vessels and nerves. Once formed they must remain open, due to the vital structures they contain, i.e.

View Article and Find Full Text PDF

Animals are imbued with adaptive mechanisms spanning from the tissue/organ to the cellular scale which insure that processes of homeostasis are preserved in the landscape of size change. However we and others have postulated that the degree of adaptation is limited and that once outside the normal levels of size fluctuations, cells and tissues function in an aberant manner. In this study we examine the function of muscle in the myostatin null mouse which is an excellent model for hypertrophy beyond levels of normal growth and consequeces of acute starvation to restore mass.

View Article and Find Full Text PDF

Mammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide.

View Article and Find Full Text PDF

Myostatin regulates both muscle mass and muscle metabolism. The myostatin null (MSTN(-/-)) mouse has a hypermuscular phenotype owing to both hypertrophy and hyperplasia of the myofibres. The enlarged muscles display a reliance on glycolysis for energy production; however, enlarged muscles that develop in the absence of myostatin have compromised force-generating capacity.

View Article and Find Full Text PDF

Gene compensation by members of the myogenic regulatory factor (MRF) family has been proposed to explain the apparent normal adult phenotype of MyoD(-/-) mice. Nerve and field stimulation were used to investigate contraction properties of muscle from MyoD(-/-) mice, and molecular approaches were used to investigate satellite-cell behavior. We demonstrate that MyoD deletion results in major alterations in the organization of the neuromuscular junction, which have a dramatic influence on the physiological contractile properties of skeletal muscle.

View Article and Find Full Text PDF

The major component of skeletal muscle is the myofibre. Genetic intervention inducing over-enlargement of myofibres beyond a certain threshold through acellular growth causes a reduction in the specific tension generating capacity of the muscle. However the physiological parameters of a genetic model that harbours reduced skeletal muscle mass have yet to be analysed.

View Article and Find Full Text PDF

Inhibition of myostatin signalling or its biological activity has recently emerged as a potential remedial approach against muscle wasting and degenerative diseases such as muscular dystrophies. In the present study we systemically administered a recombinant AAV8 vector expressing a mutated myostatin propeptide (AAV8ProMyo) to healthy mice in order to assess its impact on the histological, cellular and physiological properties of the skeletal muscle, exploiting the fact that myostatin is naturally inhibited by its own propeptide. We report that a single intravenous administration of AAV8ProMyo leads to increases in muscle mass of tibialis anterior, extensor digitorum longus and gastrocnemius muscles 8 weeks post-injection and tibialis anterior, gastrocnemius and rectus femoris muscles 17 weeks post-injection.

View Article and Find Full Text PDF

Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies.

View Article and Find Full Text PDF

Background: Obesity is a multi-factorial condition generally attributed to an unbalanced diet and lack of exercise. Recent evidence suggests that maternal malnutrition during pregnancy and lactation can also contribute to the development of obesity in offspring. We have developed an animal model in rats to examine the effects of maternal overeating on a westernized "junk food" diet using palatable processed foods rich in fat, sugar and salt designed for human consumption.

View Article and Find Full Text PDF

The lymph heart is a sac-like structure on either side of avian tail. In some adult birds, it empties the lymph from the copulatory organ; however, during embryonic development, it is thought to circulate extra-embryonic lymph. Very little is known about the origin, innervation and the cellular changes it undergoes during development.

View Article and Find Full Text PDF

The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles.

View Article and Find Full Text PDF

We have previously shown that Myostatin, a member of the transforming growth factor beta (TFG-beta) family of signalling molecules, is expressed in developing muscle, and that treatment with recombinant Myostatin inhibited the expression of key myogenic transcription factors during chick embryogenesis. In this study, we followed the fate of muscle precursors after exposure to Myostatin. We report that in contrast to the down-regulation in expression of Pax-3, Myf-5, MyoD, and Myogenin, expression of Pax-7 was maintained.

View Article and Find Full Text PDF

In this study we investigated the effect of recombinant activin A on the differentiation of limb muscle precursors of chick embryos. We show that treatment with activin resulted in a downregulation of Pax-3 and MyoD expression within 6 h after treatment, whereas expression of Myf-5 and Pax-7 was largely unaffected. The effect on gene expression was transient because 1 day after activin exposure the development of the premuscle masses had proceeded, and Pax-3 and MyoD expression was reexpressed at normal levels.

View Article and Find Full Text PDF

This study determined the effect of decamethonium bromide (DMBr), a non-competitive blocker of the neuromuscular junction, on skeletal muscle development during chick embryogenesis. Decamethonium bromide caused generalized edema and high mortality with treated embryos rarely surviving beyond day 16 of incubation. Muscle degeneration was grossly evident on the muscles of abdomen, pectoral girdle, and leg.

View Article and Find Full Text PDF