Quantitative Structure Activity Relationship modelling methodologies need to incorporate relevant mechanistic information to have high predictive performance and validity. Electrophilic reactivity is a common mechanistic feature of skin sensitization endpoints which could be concisely characterized with electronic descriptors which is key to enabling the modelling of small datasets in this domain. However, quantum mechanical methodologies have previously featured high computational costs which would exclude the use of large datasets.
View Article and Find Full Text PDFArtificial intelligence (AI) is rising rapidly, driven by big data, complex algorithms, and computing resources. Current research presented at the American Chemical Society Fall 2023 Meeting demonstrates AI to be a valuable predictive and supporting tool across all facets of toxicology.
View Article and Find Full Text PDFThe Ames test is a gold standard mutagenicity assay that utilizes various strains with and without S9 fraction to provide insights into the mechanisms by which a chemical can mutate DNA. Multitask deep learning is an ideal framework for developing QSAR models with multiple end points, such as the Ames test, as the joint training of multiple predictive tasks may synergistically improve the prediction accuracy of each task. This work investigated how toxicology domain knowledge can be used to handcraft task groupings that better guide the training of multitask neural networks compared to a naïve ungrouped multitask neural network developed on a complete set of tasks.
View Article and Find Full Text PDFThe prediction of Ames mutagenicity continues to be a concern in both regulatory and pharmacological toxicology. Traditional quantitative structure-activity relationship (QSAR) models of mutagenicity make predictions based on molecular descriptors calculated on a chemical data set used in their training. However, it is known that molecules such as aromatic amines can be non-mutagenic themselves but metabolically activated by S9 rodent liver enzyme in Ames tests forming molecules such as iminoquinones or amine substituents that better stabilize mutagenic nitrenium ions in known pathways of mutagenicity.
View Article and Find Full Text PDFThe Open Source Malaria (OSM) consortium is developing compounds that kill the human malaria parasite, , by targeting ATP4, an essential ion pump on the parasite surface. The structure of ATP4 has not been determined. Here, we describe a public competition created to develop a predictive model for the identification of ATP4 inhibitors, thereby reducing project costs associated with the synthesis of inactive compounds.
View Article and Find Full Text PDFThis work presents a quantum mechanical model for predicting octanol-water partition coefficients of small protein-kinase inhibitor fragments as part of the SAMPL6 LogP Prediction Challenge. The model calculates solvation free energy differences using the M06-2X functional with SMD implicit solvation and the def2-SVP basis set. This model was identified as dqxk4 in the SAMPL6 Challenge and was the third highest performing model in the physical methods category with 0.
View Article and Find Full Text PDFEffective representation of a molecule is required to develop useful quantitative structure-property relationships (QSPR) for accurate prediction of chemical properties. The octanol-water partition coefficient logP, a measure of lipophilicity, is an important property for pharmacological and toxicological endpoints used in the pharmaceutical and regulatory spheres. We compare physicochemical descriptors, structural keys, and circular fingerprints in their ability to effectively represent a chemical space and characterise molecular features to correlate with lipophilicity.
View Article and Find Full Text PDFTesting for human papilloma virus (HPV) has been shown to be more sensitive than cervical cytology in detecting both high-grade and low-grade dysplasia. When screening for cervical cancer, unfortunately, the HPV test lacks specificity and has limited its usefulness as a primary screening modality for cervical cancer. In this chapter, we will review HPV and its role in cervical cancer, the utilization of HPV testing in current practice, and the possible future utilization of HPV and its role in screening.
View Article and Find Full Text PDF