J Vasc Surg Venous Lymphat Disord
July 2019
Endovascular exclusion of aortoenteric fistula has been described as a bridge to definitive open repair surgery. However, little is known about transposing this technique to treat duodenocaval fistula. We report a case of a 20-year-old man who presented with a duodenocaval fistula arising from a metastatic nonseminomatous germ cell tumor.
View Article and Find Full Text PDFIn the clinical and pharmacological fields, there is a need for the production of tissue-engineered small-diameter blood vessels. We have demonstrated previously that the extracellular matrix (ECM) produced by fibroblasts can be used as a scaffold to support three-dimensional (3D) growth of another cell type. Thus, a resistant tissue-engineered vascular media can be produced when such scaffolds are used to culture smooth muscle cells (SMCs).
View Article and Find Full Text PDFBackground: Despite present optimal standard treatment of lower-extremity ulceration, a high incidence of recurrence and treatment failure is observed. The objective of this project was to evaluate the effect of a self-assembled skin substitute (SASS) made by tissue engineering as a temporary cutaneous dressing in the treatment of hard-to-heal chronic ulcers.
Patients And Methods: The prospective uncontrolled case study includes patients suffering from venous or mixed ulcers lasting more than 6 months and unresponsive to compression therapy, with an Ankle Brachial Index greater than 0.
Tissue-engineered blood vessel is one of the most promising living substitutes for coronary and peripheral artery bypass graft surgery. However, one of the main limitations in tissue engineering is vascularization of the construct before implantation. Such a vascularization could play an important role in graft perfusion and host integration of tissue-engineered vascular adventitia.
View Article and Find Full Text PDFBackground: In the present study, an arterial tissue-engineered vascular media (TEVM) was produced from cultured human smooth muscle cells of the umbilical artery and we took advantage of this model to evaluate the regulation of contraction and the signalling pathways of polyphenols in arteries.
Methods: Cultured human smooth muscle cells of the umbilical artery were used to produce arterial TEVMs. Contraction experiments were performed to determine intracellular targets involved in the modulation of contraction by polyphenols extract from red wine, Provinols (SEPPIC Groupe Air Liquide, Paris, France).
The cause underlying the onset of stenosis after vascular reconstruction is not well understood. In the present study, we evaluated the effect of mechanical unloading on the differentiation state of human vascular smooth muscle cells (hVSMCs) using a tissue-engineered vascular media (TEVM). hVSMCs cultured in a mechanically loaded three-dimensional environment, known as a living tissue sheet, had a higher differentiated state than cells grown on plastic.
View Article and Find Full Text PDFWhether the adventitia component of blood vessels directly participates in the regulation of vascular tone remains to be demonstrated. We have recently developed a human tissue-engineered blood vessel comprising the three tunicae of a native blood vessel using the self-assembly approach. To investigate the role of the adventitia in the modulation of vascular tone, this tissue-engineering method was used to produce three vascular constructs from cells explanted and proliferated from donor vessel tunicae 1) an adventitia + a media, or only 2) an adventitia, or 3) a media.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2004
The availability of small-diameter blood vessels remains a significant problem in vascular reconstruction. In small-diameter blood vessels, synthetic grafts resulted in low patency; the addition of endothelial cells (EC) has clearly improved this parameter, thereby proving the important contribution of the cellular component to the functionality of any construct. Because the optimal source of cells should be autologous, the adaptation of existing methods for the isolation of all the vascular cell types present in a single and small biopsy sample, thus reducing patient's morbidity, is a first step toward future clinical applications of any newly developed tissue-engineered blood vessel.
View Article and Find Full Text PDF