The home-based training approach benefits stroke survivors by providing them with an increased amount of training time and greater feasibility in terms of their training schedule, particularly for those with severe motor impairment. Computer-guided training systems provide visual feedback with correct movement patterns during home-based training. This study aimed to investigate the improvement in motor performance among stroke survivors with moderate to severe motor impairment after 800 min of training using a home-based guidance training system with interactive visual feedback.
View Article and Find Full Text PDFIn the dynamic realm of practical clinical scenarios, Continual Learning (CL) has gained increasing interest in medical image analysis due to its potential to address major challenges associated with data privacy, model adaptability, memory inefficiency, prediction robustness and detection accuracy. In general, the primary challenge in adapting and advancing CL remains catastrophic forgetting. Beyond this challenge, recent years have witnessed a growing body of work that expands our comprehension and application of continual learning in the medical domain, highlighting its practical significance and intricacy.
View Article and Find Full Text PDFBackground: Delivering HD-tDCS on individual motor hotspot with optimal electric fields could overcome challenges of stroke heterogeneity, potentially facilitating neural activation and improving motor function for stroke survivors. However, the intervention effect of this personalized HD-tDCS has not been explored on post-stroke motor recovery. In this study, we aim to evaluate whether targeting individual motor hotspot with HD-tDCS followed by EMG-driven robotic hand training could further facilitate the upper extremity motor function for chronic stroke survivors.
View Article and Find Full Text PDFObjective: To derive and validate a prediction model for minimal clinically important differences (MCIDs) in upper extremity (UE) motor function after intention-driven robotic hand training using residual voluntary electromyography (EMG) signals from affected UE.
Design: A prospective longitudinal multicenter cohort study. We collected preintervention candidate predictors: demographics, clinical characteristics, Fugl-Meyer assessment of UE (FMAUE), Action Research Arm Test scores, and motor intention of flexor digitorum and extensor digitorum (ED) measured by EMG during maximal voluntary contraction (MVC).
The act of recalling memories can paradoxically lead to the forgetting of other associated memories, a phenomenon known as retrieval-induced forgetting (RIF). Inhibitory control mechanisms, primarily mediated by the prefrontal cortex, are thought to contribute to RIF. In this study, we examined whether stimulating the medial prefrontal cortex (mPFC) with transcranial direct current stimulation modulates RIF and investigated the associated electrophysiological correlates.
View Article and Find Full Text PDFThis study examines pedaling asymmetry using the electromyogram (EMG) complexity of six bilateral lower limb muscles for chronic stroke survivors. Fifteen unilateral chronic stroke and twelve healthy participants joined passive and volitional recumbent pedaling tasks using a self-modified stationary bike with a constant speed of 25 revolutions per minute. The fuzzy approximate entropy (fApEn) was adopted in EMG complexity estimation.
View Article and Find Full Text PDFBackground: Intensive task-oriented training has shown promise in enhancing distal motor function among patients with chronic stroke. A personalized electromyography (EMG)-driven soft robotic hand was developed to assist task-oriented object-manipulation training effectively. To compare the effectiveness of task-oriented training using the EMG-driven soft robotic hand.
View Article and Find Full Text PDFSegmenting prostate from magnetic resonance imaging (MRI) is a critical procedure in prostate cancer staging and treatment planning. Considering the nature of labeled data scarcity for medical images, semi-supervised learning (SSL) becomes an appealing solution since it can simultaneously exploit limited labeled data and a large amount of unlabeled data. However, SSL relies on the assumption that the unlabeled images are abundant, which may not be satisfied when the local institute has limited image collection capabilities.
View Article and Find Full Text PDFHand rehabilitation in chronic stroke remains challenging, and finding markers that could reflect motor function would help to understand and evaluate the therapy and recovery. The present study explored whether brain oscillations in different electroencephalogram (EEG) bands could indicate the motor status and recovery induced by action observation-driven brain-computer interface (AO-BCI) robotic therapy in chronic stroke. The neurophysiological data of 16 chronic stroke patients who received 20-session BCI hand training is the basis of the study presented here.
View Article and Find Full Text PDFIntroduction: After a stroke, individuals commonly experience visual problems and impaired cognitive function, which can significantly impact their daily lives. In addition to visual neglect and hemianopia, stroke survivors often have difficulties with visual search tasks. Researchers are increasingly interested in using eye tracking technology to study cognitive processing and determine whether eye tracking metrics can be used to screen and assess cognitive impairment in patients with neurological disorders.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Recent semi-supervised learning approaches appealingly advance medical image segmentation for their effectiveness in alleviating the need for a large amount of expert-demanding annotations. However, most of them have two limitations: (i) neglect of the intra-class variation caused by different patients and scanning protocols, which makes the pixel-level label propagation difficult; (ii) non-selective stability learning (a.k.
View Article and Find Full Text PDFEMG-driven robot hand training can facilitate motor recovery in chronic stroke patients by restoring the interhemispheric balance between motor networks. However, the underlying mechanisms of reorganization between interhemispheric regions remain unclear. This study investigated the effective connectivity (EC) between the ventral premotor cortex (PMv), supplementary motor area (SMA), and primary motor cortex (M1) using Dynamic Causal Modeling (DCM) during motor tasks with the paretic hand.
View Article and Find Full Text PDFThe limited portability of pneumatic pumps presents a challenge for ankle-foot orthosis actuated by pneumatic actuators. The high-pressure requirements and time delay responses of pneumatic actuators necessitate a powerful and large pump, which renders the entire device heavy and inconvenient to carry. In this paper, we propose and validate a concept that enhances portability by employing a slack cable tendon mechanism.
View Article and Find Full Text PDFThis paper proposes a method for accurate 3D posture sensing of the soft actuators, which could be applied to the closed-loop control of soft robots. To achieve this, the method employs an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators. The method takes into account the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors.
View Article and Find Full Text PDFTranscranial alternating current stimulation (tACS) offers a unique method to temporarily manipulate the activity of the stimulated brain region in a frequency-dependent manner. However, it is not clear if repetitive modulation of ongoing oscillatory activity with tACS over multiple days can induce changes in grey matter resting-state functional connectivity and white matter structural integrity. The current study addresses this question by applying multiple-session theta band stimulation on the left dorsolateral prefrontal cortex (L-DLPFC) during arithmetic training.
View Article and Find Full Text PDFMenstrually-related migraine (MM) is a primary migraine in women of reproductive age. The underlying neural mechanism of MM was still unclear. In this study, we aimed to reveal the case-control differences in network integration and segregation for the morphometric similarity network of MM.
View Article and Find Full Text PDFSemi-supervised learning has greatly advanced medical image segmentation since it effectively alleviates the need of acquiring abundant annotations from experts, wherein the mean-teacher model, known as a milestone of perturbed consistency learning, commonly serves as a standard and simple baseline. Inherently, learning from consistency can be regarded as learning from stability under perturbations. Recent improvement leans toward more complex consistency learning frameworks, yet, little attention is paid to the consistency target selection.
View Article and Find Full Text PDFUnsupervised domain adaptation (UDA), which is used to alleviate the domain shift between the source domain and target domain, has attracted substantial research interest. Previous studies have proposed effective UDA methods which require both labeled source data and unlabeled target data to achieve desirable distribution alignment. However, due to privacy concerns, the vendor side often can only trade the pretrained source model without providing the source data to the targeted client, leading to failed adaptation by classical UDA techniques.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
September 2022
In order to tackle the difficulty associated with the ill-posed nature of the image registration problem, regularization is often used to constrain the solution space. For most learning-based registration approaches, the regularization usually has a fixed weight and only constrains the spatial transformation. Such convention has two limitations: (i) Besides the laborious grid search for the optimal fixed weight, the regularization strength of a specific image pair should be associated with the content of the images, thus the "one value fits all" training scheme is not ideal; (ii) Only spatially regularizing the transformation may neglect some informative clues related to the ill-posedness.
View Article and Find Full Text PDFBackground: The lack of the rehabilitation professionals is a global issue and it is becoming more serious during COVID-19. An Augmented Reality Rehabilitation System (AR Rehab) was developed for virtual training delivery. The virtual training was integrated into the participants' usual care to reduce the human trainers' effort so that the manpower scarcity can be eased.
View Article and Find Full Text PDFSoft robots can create complicated structures and functions for rehabilitation. The posture perception of soft actuators is critical for performing closed-loop control for a precise location. It is essential to have a sensor with both soft and flexible characteristics that does not affect the movement of a soft actuator.
View Article and Find Full Text PDFThe neuromodulation effect of anodal tDCS is not thoroughly studied, and the heterogeneous profile of stroke individuals with brain lesions would further complicate the stimulation outcomes. This study aimed to investigate the functional changes in sensorimotor areas induced by anodal tDCS and whether individual electric field could predict the functional outcomes. Twenty-five chronic stroke survivors were recruited and divided into tDCS group (n = 12) and sham group (n = 13).
View Article and Find Full Text PDFBackground: Non-invasive brain stimulation methods have been widely utilized in research settings to manipulate and understand the functioning of the human brain. In the last two decades, transcranial electrical stimulation (tES) has opened new doors for treating impairments caused by various neurological disorders. However, tES studies have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no consensus on the effectiveness of tES devices in improving cognitive skills after the onset of stroke.
View Article and Find Full Text PDF