Publications by authors named "Raymond K Kostuk"

The eye-tracking system plays an essential role in the augmented reality (AR) eyewear. Waveguide volume holographic optical elements (HOE) that can be made with high efficiency, thin form, and lightweight are well-suited for this application. Traditional holographic lenses formed with spherical wavefronts at visible wavelengths and used for near-infrared (NIR) eye-tracking systems suffer from significant image aberrations, image tilt, and ghost images.

View Article and Find Full Text PDF

In this paper a photovoltaic system is proposed that achieves high energy yield by integrating bifacial silicon cells into a spectrum-splitting module. Spectrum splitting is accomplished using volume holographic optical elements to spectrally divide sunlight onto an array of photovoltaic cells with different bandgap energies. Light that is reflected from the ground surface onto the rear side of the module is converted by the bifacial silicon cells.

View Article and Find Full Text PDF

A system for replicating high-efficiency volume hologram arrays, which has potential for high-volume manufacturing, is proposed. The system can meet the fabrication requirements of spectrum-splitting photovoltaic systems that are based on transmission volume holographic lens arrays. While previous hologram replication systems are mostly based on variations of the contact-copy method, the new technique is based on diffraction of reference and object beams from a master hologram through a prism and does not require contact with the copy hologram.

View Article and Find Full Text PDF

A wavelength-coded volume holographic imaging (WC-VHI) endoscope system capable of simultaneous multifocal imaging is presented. The system images light from two depths separated by 100  μm in a tissue sample by using axial chromatic dispersion of a gradient index probe in combination with two light-emitting diode sources and a multiplexed volume hologram to separate the images. This system is different from previous VHI systems in that it uses planar multiplexed gratings and does not require curved holographic gratings.

View Article and Find Full Text PDF

A reflectance volume holographic imaging (VHI) endoscope has been designed for simultaneous in vivo imaging of surface and subsurface tissue structures. Prior utilization of VHI systems has been limited to ex vivo tissue imaging. The VHI system presented in this work is designed for laparoscopic use.

View Article and Find Full Text PDF

A multi-wavelength expansion of the Gerchberg-Saxton (GS) algorithm is developed to design and optimize a surface relief Diffractive Optical Element (DOE). The DOE simultaneously diffracts distinct wavelength bands into separate target regions. A description of the algorithm is provided, and parameters that affect filter performance are examined.

View Article and Find Full Text PDF

During the past few years there has been a significant interest in spectrum splitting systems to increase the overall efficiency of photovoltaic solar energy systems. However, methods for comparing the performance of spectrum splitting systems and the effects of optical spectral filter design on system performance are not well developed. This paper addresses these two areas.

View Article and Find Full Text PDF

Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery.

View Article and Find Full Text PDF

Confocal microscopy rejects out-of-focus light from the object by scanning a pinhole through the image and reconstructing the image point by point. Volume holographic imaging systems with bright-field illumination have been proposed as an alternative to conventional confocal-type microscopes that does not require scanning of a pinhole or a slit. However, due to wavelength-position degeneracy of the hologram, the high Bragg selectivity of the volume hologram is not utilized and system performance is not optimized.

View Article and Find Full Text PDF

Significant optical absorption enhancement can be achieved by incorporating optical diffusers in the thin-film silicon photovoltaic (PV) cells. Absorption can be increased further by angular and spectral selective filters. In this work the properties of volume reflection holograms are examined for realizing ultra light-trapping filters for thin film silicon photovoltaic cell applications.

View Article and Find Full Text PDF

A phase-contrast volume holographic imaging system for three-dimensional contrast enhancement is presented. The system utilizes a spatial filter placed on a conjugate plane to the volume holographic pupil to simultaneously enhance weak phase information at different depths within an object. The proposed system was validated with experimental image data obtained in mouse colon samples and quantitative measurements of modulation transfer function as well.

View Article and Find Full Text PDF

The performance of broadband volume holographic imaging system in terms of depth selectivity is investigated. The mechanism for depth resolution degradation is explained. In order to overcome this resolution degradation, a novel imaging device, the confocal-rainbow volume holographic imaging system, is proposed.

View Article and Find Full Text PDF

The resolution dependence of spatial-spectral volume holographic imaging systems on angular and spectral bandwidth of nonuniform gratings is investigated. Modeling techniques include a combination of the approximate coupled-wave analysis and the transfer-matrix method for holograms recorded in absorptive media. The effective thickness of the holograms is used as an estimator of the resolution of the imaging systems.

View Article and Find Full Text PDF

Diffracted image patterns from volume holograms that are used in volume holographic imaging systems (VHISs) are investigated. It is shown that, in VHISs, prior information about the shape and spectral properties of the diffracted patterns is important not only to determine the curvature and field of view of the image, but also for image registration and noise removal. A new methodology to study numerically and analytically the dependence of VHIS diffraction patterns with the hologram construction parameters and the readout wavelength is described.

View Article and Find Full Text PDF

A new methodology describing the effects of aperiodic and multiplexed gratings in volume holographic imaging systems (VHIS) is presented. The aperiodic gratings are treated as an ensemble of localized planar gratings using coupled wave methods in conjunction with sequential and non-sequential ray-tracing techniques to accurately predict volumetric diffraction effects in VHIS. Our approach can be applied to aperiodic, multiplexed gratings and used to theoretically predict the performance of multiplexed volume holographic gratings within a volume hologram for VHIS.

View Article and Find Full Text PDF

Spatial Spectral Holographic imaging system (S(2)-VHIS) is a promising alternative to confocal microscopy due to its capabilities to simultaneously image several sample depths with high resolution. However, the field of view of previously presented S(2)-VHIS prototypes has been restricted to less than 200μm. This paper presents experimental results of an improved S(2)-VHIS design which have a field of view of ~1mm while maintaining high resolution and dynamic range.

View Article and Find Full Text PDF

Holographic imaging filters are required to have high Bragg selectivity, namely, narrow angular and spectral bandwidth, to obtain spatial-spectral information within a three-dimensional object. In this Letter, we present the design of holographic imaging filters formed using silicon oxide nanoparticles (nano-SiO(2)) in phenanthrenquinone-poly(methyl methacrylate) (PQ-PMMA) polymer recording material. This combination offers greater Bragg selectivity and increases the diffraction efficiency of holographic filters.

View Article and Find Full Text PDF

We analyze the energy collection properties of holographic planar concentrator systems. The effects of solar variation on daily and annual energy collection are evaluated. Hologram diffraction efficiency, polarization, crosstalk in cascaded elements, and constraints imposed by the radiance theorem, as well as solar illumination characteristics, are considered.

View Article and Find Full Text PDF

A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

View Article and Find Full Text PDF

Holographic gratings formed in thick phenanthrenquinone- (PQ-) doped poly(methyl methacrylate) (PMMA) can be made to have narrowband spectral and spatial transmittance filtering properties. We present the design and performance of angle-multiplexed holographic filters formed in PQ-PMMA at 488 nm and reconstructed with a LED operated at approximately 630 nm. The dark delay time between exposure and the preillumination exposure of the polymer prior to exposure of the holographic area are varied to optimize the diffraction efficiency of multiplexed holographic filters.

View Article and Find Full Text PDF

We present the design and procedures for implementing a parallel optical coherence tomography (POCT) imaging system that can be adapted to an endoscopic format. The POCT system consists of a single mode fiber (SMF) array with multiple reduced diameter (15 microm) SMFs in the sample arm with 15 microm center spacing between fibers. The size of the array determines the size of the transverse imaging field.

View Article and Find Full Text PDF

We examine the temperature dependence of edge-illuminated holographic filters formed in phenanthrenquinone doped poly(methyl methacrylate) (PQ/PMMA) operating at 1550 nm. It was found that the thermally induced change to the refractive index and volume can be used to select the wavelength filtered by the grating. The temperature can be varied over a range of 15 degrees C without introducing noticeable hysteresis effects.

View Article and Find Full Text PDF

We examine signal degradation effects in fiber arrays from fiber-to-fiber coupling and from cross talk attributable to backscatter from the sample medium originating from adjacent fibers in the array. An analysis of coupling and cross talk for single-mode fibers (SMFs) operating at 1310 nm with different core diameters, interaction lengths, core center spacing, and numerical apertures (NAs) is evaluated. The coupling was evaluated using beam propagation algorithms and cross talk was analyzed by using Monte Carlo methods.

View Article and Find Full Text PDF

We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications.

View Article and Find Full Text PDF

Bend loss effects can be a significant concern in the design and performance of diffused, buried waveguide devices. Since diffused, buried waveguides typically do not have analytical mode solutions, the bend mode must be expressed as an expansion of straight waveguide modes. For the case of buried ion-exchanged waveguides, the bend loss is affected by bend radius, the duration of the ion exchange and burial processes, as well as the size of the mask opening used to create the waveguides and applied field during burial.

View Article and Find Full Text PDF