The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from and , revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive.
View Article and Find Full Text PDFNew strategies are needed to counter the escalating threat posed by drug-resistant fungi. The molecular chaperone Hsp90 affords a promising target because it supports survival, virulence and drug-resistance across diverse pathogens. Inhibitors of human Hsp90 under development as anticancer therapeutics, however, exert host toxicities that preclude their use as antifungals.
View Article and Find Full Text PDFNatural products are well known for their biological relevance, high degree of three-dimensionality, and access to areas of largely unexplored chemical space. To shape our understanding of the interaction between natural products and protein targets in the postgenomic era, we have used native mass spectrometry to investigate 62 potential protein targets for malaria using a natural-product-based fragment library. We reveal here 96 low-molecular-weight natural products identified as binding partners of 32 of the putative malarial targets.
View Article and Find Full Text PDFCalcium dependent protein kinase 1 (CDPK1) is an essential enzyme in the opportunistic pathogen Toxoplasma gondii. CDPK1 controls multiple processes that are critical to the intracellular replicative cycle of T. gondii including secretion of adhesins, motility, invasion, and egress.
View Article and Find Full Text PDFTo combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC of 160 pM in a PfPKG kinase assay and inhibits P.
View Article and Find Full Text PDFFIKKs are parasite-specific protein kinases with distinctive sequence motifs and their biological roles have not been completely elucidated. Here, we report the first potent Cryptosporidium FIKK (CpFIKK) inhibitor. We identified 4b as a potent (IC50=0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2017
The p300/CBP-associated factor (PCAF) and related GCN5 bromodomain-containing lysine acetyl transferases are members of subfamily I of the bromodomain phylogenetic tree. Iterative cycles of rational inhibitor design and biophysical characterization led to the discovery of the triazolopthalazine-based L-45 (dubbed L-Moses) as the first potent, selective, and cell-active PCAF bromodomain (Brd) inhibitor. Synthesis from readily available (1R,2S)-(-)-norephedrine furnished L-45 in enantiopure form.
View Article and Find Full Text PDFThe protozoan parasite secretes a family of serine-threonine protein kinases into its host cell in order to disrupt signaling and alter immune responses. One prominent secretory effector is the rhoptry protein 18 (ROP18), a serine-threonine kinase that phosphorylates immunity related GTPases (IRGs) and hence blocks interferon gamma-mediated responses in rodent cells. Previous genetic studies show that ROP18 is a major virulence component of strains from North and South America.
View Article and Find Full Text PDFIn 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds' mechanisms of action--i.e.
View Article and Find Full Text PDFThe life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca(2+) Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca(2+) indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca(2+) signaling in the model apicomplexan Toxoplasma gondii In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca(2+) We define the pool of Ca(2+) regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca(2+) signaling.
View Article and Find Full Text PDFLancet Infect Dis
February 2016
Background: Pretreatment with topical imiquimod, a synthetic agonist of toll-like receptor 7, significantly improved the immunogenicity of influenza vaccination in elderly people. We aimed to clarify its effect in a younger age group.
Methods: In this double-blind, randomised controlled trial, we enrolled healthy volunteers aged 18-30 years in early 2014 to receive the 2013-14 northern-hemisphere winter trivalent influenza vaccine at the Queen Mary Hospital, (Hong Kong, China).
FIKKs are protein kinases with distinctive sequence motifs found exclusively in Apicomplexa. Here, we report on the biochemical characterization of Plasmodium falciparum FIKK8 (PfFIKK8) and its Cryptosporidium parvum orthologue (CpFIKK) - the only member of the family predicted to be cytosolic and conserved amongst non-Plasmodium parasites. Recombinant protein samples of both were catalytically active.
View Article and Find Full Text PDFRNA-Seq was used to unveil the transcriptional profile of DF-1 cells at the early stage of caIBDV infection. Total RNAs were extracted from virus-infected cells at 0, 6 and 12 hpi. RNA-Seq datasets of respective samples mapped to 56.
View Article and Find Full Text PDFTrends Pharmacol Sci
July 2015
Apicomplexan parasites cause some of the most severe human diseases, including malaria (caused by Plasmodium), toxoplasmosis, and cryptosporidiosis. Treatments are limited by the lack of effective drugs and development of resistance to available agents. By exploiting novel features of protein kinases in these parasites, it may be possible to develop new treatments.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
May 2015
Protozoa of the genus Plasmodium are responsible for malaria, which is perhaps the most important parasitic disease to infect mankind. The emergence of Plasmodium strains resistant to current therapeutics and prophylactics makes the development of new treatment strategies urgent. Among the potential targets for new antimalarial drugs is the BolA-like protein PFE0790c from Plasmodium falciparum (Pf-BolA).
View Article and Find Full Text PDFMany cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens.
View Article and Find Full Text PDFWe previously identified and presented the draft genome of a Xanthomonadaceae bacterial strain Dyella japonica A8 which shows quorum-quenching activity. Here, we report the complete, closed genome sequence of this bacterium. This complete genome may help to further investigate the comparative quorum-quenching activity among D.
View Article and Find Full Text PDFMost studies on PRRSV evolution have been limited to a particular region of the viral genome. A thorough genome-wide understanding of the impact of different mechanisms on shaping PRRSV genetic diversity is still lacking. To this end, deep sequencing was used to obtain genomic sequences of a diverse set of 16 isolates from a region of Hong Kong with a complex PRRSV epidemiological record.
View Article and Find Full Text PDFHuman African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery.
View Article and Find Full Text PDFBackground: Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progressed significantly over the past decade, critical questions concerning the underlying microbial interactions remain unanswered. In this study, a metagenomic approach was adopted to investigate the microbial composition and gene content contributing to enhanced biogas production from sludge subjected to a novel pretreatment method (maintaining pH at 10 for 8 days) compared to other documented methods (ultrasonic, thermal and thermal-alkaline).
View Article and Find Full Text PDFThe ATP-dependent caseinolytic protease, ClpP, is highly conserved in bacteria and in the organelles of different organisms. In cyanobacteria, plant plastids, and the apicoplast of the genus Plasmodium, a noncatalytic paralog of ClpP, termed ClpR, has been identified. ClpRs are found to form heterocomplexes with ClpP resulting in a ClpRP tetradecameric cylinder having less than 14 catalytic triads.
View Article and Find Full Text PDFEnterobacter cloacae subsp. cloacae strain ENHKU01 is a Gram-negative endophyte isolated from a diseased pepper (Capsicum annuum) plant in Hong Kong. This is the first complete genome sequence report of a plant-endophytic strain of E.
View Article and Find Full Text PDFThe enzymes phosphomannomutase (PMM), phospho-N-acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N-acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.
View Article and Find Full Text PDF