Objective: With COVID-19, there was a need for a rapidly scalable annotation system that facilitated real-time integration with clinical decision support systems (CDS). Current annotation systems suffer from a high-resource utilization and poor scalability limiting real-world integration with CDS. A potential solution to mitigate these issues is to use the rule-based gazetteer developed at our institution.
View Article and Find Full Text PDFPsychosocial stress is a major risk factor for morbidity and mortality related to a wide range of health conditions and has a significant negative impact on public health. Quantifying exposure to stress in the naturalistic environment can help to better understand its health effects and identify strategies for timely intervention. The objective of the current project was to develop and test the infrastructure and methods necessary for using wearable technology to quantify individual response to stressful situations and to determine if popular and accessible fitness trackers such as Fitbit® equipped with an optical heart rate (HR) monitor could be used to detect physiological response to psychosocial stress in everyday life.
View Article and Find Full Text PDFBackground: Incomplete prehospital trauma care is a significant contributor to preventable deaths. Current databases lack timelines easily constructible of clinical events. Temporal associations and procedural indications are critical to characterize treatment appropriateness.
View Article and Find Full Text PDFNatural language processing (NLP) methods would improve outcomes in the area of prehospital Emergency Medical Services (EMS) data collection and abstraction. This study evaluated off-the-shelf solutions for automating labelling of clinically relevant data from EMS reports. A qualitative approach for choosing the best possible ensemble of pretrained NLP systems was developed and validated along with a feature using word embeddings to test phrase synonymy.
View Article and Find Full Text PDF