Publications by authors named "Raymond De Heer"

Background: In the past, studies in behavioral neuroscience and drug development have relied on simple and quick readout parameters of animal behavior to assess treatment efficacy or to understand underlying brain mechanisms. The predominant use of classical behavioral tests has been repeatedly criticized during the last decades because of their poor reproducibility, poor translational value and the limited explanatory power in functional terms.

New Method: We present a new method to monitor social behavior of rats using automated video tracking.

View Article and Find Full Text PDF

Background: An objective and automated method for assessing alterations in gait and motor coordination in different animal models is important for proper gait analysis. The CatWalk system has been used in pain research, ischemia, arthritis, spinal cord injury and some animal models for neurodegenerative diseases.

New Method: Our goals were to obtain a comprehensive gait analysis of three different rat models and to identify which motor coordination parameters are affected and are the most suitable and sensitive to describe and detect ataxia with a secondary focus on possible training effects.

View Article and Find Full Text PDF

Thanks to the discovery of novel technologies and sophisticated analysis tools we can now 'see' molecules, genes and even patterns of gene expression, which have resulted in major advances in many areas of biology. Recently, similar technologies have been developed for behavioral studies. However, the wide implementation of such technological progress in behavioral research remains behind, as if there are inhibiting factors for accepting and adopting available innovations.

View Article and Find Full Text PDF

Lewy bodies and neurites are the pathological hallmark of Parkinson's disease. These structures are composed of fibrillized and ubiquitinated alpha-synuclein suggesting that impaired protein clearance is an important event in aggregate formation. The A30P mutation is known for its fast oligomerization, but slow fibrillization rate.

View Article and Find Full Text PDF