Publications by authors named "Raymond Colello"

Medical students represent a significant part of the health-care community and are active members of the coronavirus disease 2019 (COVID-19) response. This study aimed to evaluate various factors associated with COVID-19 vaccine intention among medical students via an online anonymous survey. A total of 370 students completed the online survey, with 229 (61.

View Article and Find Full Text PDF

In an effort to reduce concussions in football, a helmet safety-rating system was developed in 2011 that rated helmets based on their ability to reduce g-forces experienced by the head across a range of impact forces measured on the playing field. Although this was considered a major step in making the game safer, the National Football League (NFL) continues to allow players the right to choose what helmet to wear during play. This prompted us to ask: What helmets do NFL players wear and does this helmet policy make the game safer? Accordingly, we identified the helmets worn by nearly 1000 players on Week 13 of the 2015-2016 season and Week 1 of the 2016-2017 season.

View Article and Find Full Text PDF

Studies on a variety of highly regenerative tissues, including the central nervous system (CNS) in non-mammalian vertebrates, have consistently demonstrated that tissue damage induces the formation of an ionic current at the site of injury. These injury currents generate electric fields (EF) that are 100-fold increased in intensity over that measured for uninjured tissue. In vitro and in vivo experiments have convincingly demonstrated that these electric fields (by their orientation, intensity and duration) can drive the migration, proliferation and differentiation of a host of cell types.

View Article and Find Full Text PDF

Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair.

View Article and Find Full Text PDF

The elderly are among the most vulnerable to traumatic brain injury (TBI) with poor functional outcomes and impaired cognitive recovery. Of the pathological changes that occur following TBI, apoptosis is an important contributor to the secondary insults and subsequent morbidity associated with TBI. The current study investigated age-related differences in the apoptotic response to injury, which may represent a mechanistic underpinning of the heightened vulnerability of the aged brain to TBI.

View Article and Find Full Text PDF

Spinal cord injury results in tissue necrosis in and around the lesion site, commonly leading to the formation of a fluid-filled cyst. This pathological end point represents a physical gap that impedes axonal regeneration. To overcome the obstacle of the cavity, we have explored the extent to which axonal substrates can be bioengineered through electrospinning, a process that uses an electrical field to produce fine fibres of synthetic or biological molecules.

View Article and Find Full Text PDF

We report a focal disturbance in myelination of the optic nerve in the osteopetrotic (op/op) mouse, which results from a spontaneous compression of the nerve resulting from stenosis of the optic canal. The growth of the op/op optic nerve was significantly affected, being maximally suppressed at postnatal day 30 (P30; 33% of age matched control). Myelination of the nerve in the optic canal was significantly delayed at P15, and myelin was almost completely absent at P30.

View Article and Find Full Text PDF

Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure.

View Article and Find Full Text PDF

In the mammalian central nervous system, generation of new neurons persists in the subventricular zone (SVZ) throughout life. However, the capacity for neurogenesis in this region declines with aging. Recent studies have examined the degree of these age-related neurogenic declines and the changes of cytoarchitecture of the SVZ with aging.

View Article and Find Full Text PDF

We describe the structural and functional properties of three-dimensional (3D) nerve guides fabricated from poly-ε-caprolactone (PCL) using the air gap electrospinning process. This process makes it possible to deposit nano-to-micron diameter fibers into linear bundles that are aligned in parallel with the long axis of a cylindrical construct. By varying starting electrospinning conditions it is possible to modulate scaffold material properties and void space volume.

View Article and Find Full Text PDF

Neuronal plasticity deficits underlie many of the neurobehavioral problems seen in fetal alcohol spectrum disorders (FASD). Recently, we showed that third trimester alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of cortical regions responsive to the deprived eye in normal animals, but not in ferrets exposed early to alcohol.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) is a known mitogen for neural stem and progenitor cells (NS/NPCs) in the central nervous system (CNS). In vitro, EGF maintains NS/NPCs in the proliferative state, whereas in the normal rodent brain it promotes their proliferation and migration in the subventricular zone (SVZ). Additionally, EGF administration can augment neuronal replacement in the ischemic-injured adult striatum.

View Article and Find Full Text PDF

A robust and complex inflammatory cascade is known to be a prominent component of secondary injury following spinal cord injury (SCI). Specifically, the concept of trauma-induced autoimmunity has linked the lymphocyte population with neural tissue injury and neurologic deficit. FTY720, a sphingosine receptor modulator that sequesters lymphocytes in secondary lymphoid organs, has been shown to be effective in the treatment of a variety of experimental autoimmune disorders.

View Article and Find Full Text PDF

The formation of the myelin sheath is a crucial step during development because it enables fast and efficient propagation of signals within the limited space of the mammalian central nervous system (CNS). During the process of myelination, oligodendrocytes actively interact with the extracellular matrix (ECM). These interactions are considered crucial for proper and timely completion of the myelin sheath.

View Article and Find Full Text PDF

Stem/progenitor cells reside throughout the adult CNS and are actively dividing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. This neurogenic capacity of the SVZ and DG is enhanced following traumatic brain injury (TBI) suggesting that the adult brain has the inherent potential to restore populations lost to injury. This raises the possibility of developing strategies aimed at harnessing the neurogenic capacity of these regions to repair the damaged brain.

View Article and Find Full Text PDF

One of the many obstacles to spinal cord repair following trauma is the formation of a cyst that impedes axonal regeneration. Accordingly, we examined the potential use of electrospinning to engineer an implantable polarized matrix for axonal guidance. Polydioxanone, a resorbable material, was electrospun to fabricate matrices possessing either aligned or randomly oriented fibers.

View Article and Find Full Text PDF

The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent to which aligned astrocytes affect neurite outgrowth.

View Article and Find Full Text PDF

Neural stem/progenitor cells residing in the mammalian CNS provide a potential endogenous source for replenishing neurons that are lost due to aging, trauma or disease. However, little is known about their functional potential due to the lack of methodologies that allow for the reproducible alteration of stem cell numbers in vivo. Accordingly, we describe a methodology that utilizes targeted X-irradiation to experimentally generate neural stem/progenitor cell-depleted rat models.

View Article and Find Full Text PDF

Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by transmission electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low resolution cell targeting which limit its utility. Accordingly, we developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure.

View Article and Find Full Text PDF

The hippocampus is particularly vulnerable to traumatic brain injury (TBI), the consequences of which are manifested as learning and memory deficits. Following injury, substantive spontaneous cognitive recovery occurs, suggesting that innate repair mechanisms exist in the brain. However, the underlying mechanism contributing to this is largely unknown.

View Article and Find Full Text PDF

The limited regenerative capacity of the adult central nervous system (CNS) renders it unable to fully recover from injury or disease. Although stem and progenitor cells have been shown to reside throughout the brain, in most regions they exist as quiescent cell populations and do not divide sufficiently to replace damaged or destroyed cells. In an effort to stimulate the proliferative capacity of these multipotent cells, we sought to determine the in vivo response of the adult CNS to an exogenous application of basic fibroblast growth factor (bFGF), a known mitogen to stem and progenitor cells.

View Article and Find Full Text PDF

During development, postmigratory, premyelinating oligodendrocytes extend processes that navigate through the central nervous system (CNS) environment, where they recognize a number of extracellular cues, including axonal segments to be myelinated. Ultimately this recognition event leads to the formation of the CNS myelin sheath. However, the morphological structures and molecular mechanisms that control such oligodendroglial pathfinding are poorly understood.

View Article and Find Full Text PDF

Monocular deprivation (MD) for a few days during a critical period of development leads to loss of cortical responses to stimulation of the deprived eye. Despite the profound effects of MD on cortical function, optical imaging of intrinsic signals and single-unit recordings revealed that deprived eye responses and orientation selectivity recovered a few hours after restoration of normal binocular vision. Moreover, recovery of deprived eye responses was not dependent upon mRNA translation, but required cortical activity.

View Article and Find Full Text PDF

Evidence of injury-induced neurogenesis in the adult hippocampus suggests that an endogenous repair mechanism exists for cognitive dysfunction following traumatic brain injury (TBI). One factor that may be associated with this restoration is S100B, a neurotrophic/mitogenic protein produced by astrocytes, which has been shown to improve memory function. Therefore, we examined whether an intraventricular S100B infusion enhances neurogenesis within the hippocampus following experimental TBI and whether the biological response can be associated with a measurable cognitive improvement.

View Article and Find Full Text PDF

It is well known that the cognitive functions of juveniles recover to a greater extent than adult patients following traumatic brain injury (TBI). The exact mechanisms underlying this age-related disparity are unknown; however, we speculate that this improved recovery in juveniles following TBI may be associated with an endogenous neurogenic response in the hippocampus. We, therefore, examined the effects of TBI on cellular proliferation and differentiation in the dentate gyrus (DG) of the hippocampus in juvenile and adult rats following lateral fluid percussion injury (FPI).

View Article and Find Full Text PDF