Chlorine (Cl) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl (300 ppm, 25 min) in a whole-body exposure chamber.
View Article and Find Full Text PDFOzone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation.
View Article and Find Full Text PDFSulfur mustard (SM) inhalation causes debilitating pulmonary injury in humans which progresses to fibrosis. Herein, we developed a rat model of SM toxicity which parallels pathological changes in the respiratory tract observed in humans. SM vapor inhalation caused dose (0.
View Article and Find Full Text PDFMethyl isocyanate (MIC) is a highly toxic industrial chemical causing acute lethality after inhalation. The objective of this study was to determine whether alterations in hemostasis also occur in the immediate hours after exposure. Male rats were exposed to MIC (125-500 ppm) by nose-only vapor inhalation for 30 min.
View Article and Find Full Text PDFSulfur mustard (SM) is a chemical warfare agent. When inhaled, SM causes significant injury to the respiratory tract. Although the mechanism involved in acute airway injury after SM inhalation has been well described previously, the mechanism of SM's contribution to distal lung vascular injury is not well understood.
View Article and Find Full Text PDFUnlabelled: Sulfur mustard (SM) is a chemical warfare agent that causes chronic airway remodeling. This study's objective was to assess for changes to the bronchiolar epithelium after SM exposure to explain its contribution to chronic airway remodeling.
Materials And Methods: Adult male rats were exposed to a sublethal dose of SM inhalation (1.
Acute lung injury due to sulfur mustard (SM) inhalation causes the formation of airway fibrin casts that obstruct airways at multiple levels, leading to acute respiratory failure and death. These pathophysiological effects are seen in rodent models of acute SM vapor inhalation, as well as in human victims of acute SM inhalation. In rat models, the initial steps in activation of the coagulation system at extravascular sites depend on tissue factor (TF) expression by airway cells, especially in the microparticle fraction, and these effects can be inhibited by TF pathway inhibitor protein.
View Article and Find Full Text PDFElevated serum concentrations of the vasoactive protein endothelin-1 (ET-1) occur in the setting of systemic inflammatory response syndrome and contribute to distal organ hypoperfusion and pulmonary hypertension. Thus, understanding the cellular source and transcriptional regulation of systemic inflammatory stress-induced ET-1 expression may reveal therapeutic targets. Using a murine model of LPS-induced septic shock, we demonstrate that the hepatic macrophage is the primary source of elevated circulating ET-1, rather than the endothelium as previously proposed.
View Article and Find Full Text PDFVesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects.
View Article and Find Full Text PDFRationale: Sulfur mustard (SM) is a chemical weapon stockpiled today in volatile regions of the world. SM inhalation causes a life-threatening airway injury characterized by airway obstruction from fibrin casts, which can lead to respiratory failure and death. Mortality in those requiring intubation is more than 80%.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
October 2014
Acute lung injury in response to mustard gas (sulfur mustard [SM]) inhalation results in formation of fibrin casts, which obstruct the airway. The objective of this study was to identify fibrinolytic pathways that could be contributing to the persistence of airway casts after SM exposure. Rats were exposed to the SM analog, 2-chloroethyl ethyl sulfide, via nose-only aerosol inhalation.
View Article and Find Full Text PDFBackground: Inhalation of sulfur mustard (SM) and SM analog, 2-chloroethyl ethyl sulfide (CEES), cause fibrinous cast formation that occludes the conducting airways, similar to children with Fontan physiology-induced plastic bronchitis. These airway casts cause significant mortality and morbidity, including hypoxemia and respiratory distress. Our hypothesis was that intratracheal heparin, a highly cost effective and easily preserved rescue therapy, could reverse morbidity and mortality induced by bronchial cast formation.
View Article and Find Full Text PDFUnlabelled: Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence.
Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation.
Tissue factor (TF) initiates the extrinsic coagulation cascade and is a high-affinity receptor for coagulation factor VII. TF also participates in protease-activated receptor (PAR)1 and PAR2 activation. Human epithelial basal cells were previously purified on the basis of TF expression.
View Article and Find Full Text PDFCalcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2012
Acute lung injury is a principal cause of morbidity and mortality in response to mustard gas (SM) inhalation. Obstructive, fibrin-containing airway casts have recently been reported in a rat inhalation model employing the SM analog 2-chloroethyl ethyl sulfide (CEES). The present study was designed to identify the mechanism(s) causing activation of the coagulation cascade after CEES-induced airway injury.
View Article and Find Full Text PDFAm J Respir Crit Care Med
December 2010
Rationale: Sulfur mustard (SM) is a frequently used chemical warfare agent, even in modern history. SM inhalation causes significant respiratory tract injury, with early complications due to airway obstructive bronchial casts, akin to those seen after smoke inhalation and in single-ventricle physiology. This process with SM is poorly understood because animal models are unavailable.
View Article and Find Full Text PDFSulfur mustard (bis-2-(chloroethyl) sulfide; SM) is a highly reactive vesicating and alkylating chemical warfare agent. A SM analog, 2-chloroethyl ethyl sulfide (CEES), has been utilized to elucidate mechanisms of toxicity and as a screen for therapeutics. Previous studies with SM and CEES have demonstrated a role for oxidative stress as well as decreased injury with antioxidant treatment.
View Article and Find Full Text PDFAntioxid Redox Signal
February 2008
Lipoic acid (LA) and its reduced product dihydrolipoic acid (DHLA) are potent antioxidants with capacity to scavenge reactive oxygen species (ROS) and recycle endogenous antioxidants. LA may increase cellular glutathione (GSH), an antioxidant lacking in the lung's epithelial lining fluid in lung disorders such as idiopathic pulmonary fibrosis (IPF). Neutrophils (PMN) are key innate responders and are pivotal in clearing bacterial infection, therefore it is crucial to understand the impact LA may have on their function.
View Article and Find Full Text PDFThioredoxin (Trx) decreases viscosity of cystic fibrosis (CF) sputum. In this study reduced Trx increased the solubility and decreased the size of MUC5B glycoprotein while reducing disulfide bonds in sputum. Because Trx used as a mucolytic would enter airways, this study determined the effects of intratracheal instillation of reduced recombinant human thioredoxin (rhTrx) in naïve rat airways.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2005
Excessive neutrophil elastase activity within airways of cystic fibrosis (CF) patients results in progressive lung damage. Disruption of disulfide bonds on elastase by reducing agents may modify its enzymatic activity. Three naturally occurring dithiol reducing systems were examined for their effects on elastase activity: 1) Escherichia coli thioredoxin (Trx) system, 2) recombinant human thioredoxin (rhTrx) system, and 3) dihydrolipoic acid (DHLA).
View Article and Find Full Text PDFThe effect of hyperoxia on levels of DNA damage and global DNA methylation was examined in lung epithelial-like A549 cells. DNA damage was assessed by the single-cell gel electrophoresis (comet assay) and DNA methylation status by the cytosine extension assays. Cells exposed to ionizing radiation (0, 1, 2, 4, or 8 Gy) showed increasing rates of percentage of DNA in the tail and tail length with increasing radiation dose.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2004
The persistent and viscous nature of airway secretions in cystic fibrosis (CF) disease leads to airway obstruction, opportunistic infection, and deterioration of lung function. Thioredoxin (Trx) is a protein disulfide reductase that catalyzes numerous thiol-dependent cellular reductive processes. To determine whether Trx can alter the rheological properties of mucus, sputum obtained from CF patients was treated with TRX and its reducing system (0.
View Article and Find Full Text PDFAlthough oxygen is required for normal aerobic respiration, hyperoxia (95% O(2)/5% CO(2)) damages DNA, inhibits proliferation in G1, S and G2 phases of the cell cycle, and induces necrosis. The current study examines whether growth arrest in G1 protects pulmonary epithelial cells from oxidative DNA damage and cell death. Mv1Lu pulmonary adenocarcinoma cells were chosen for studies because hyperoxia inhibits their proliferation in S and G2 phase, while they can be induced to arrest in G1 by altering culture conditions.
View Article and Find Full Text PDF