Background: Loose-fitting powered air-purifying respirators (PAPRs) are a popular alternative to the use of filtering facepiece respirators for health care workers. Although PAPRs protect the wearer from aerosol particles, their ability to block infectious aerosol particles exhaled by the wearer from being released into the environment (called source control) is unclear.
Methods: The source control performance of 4 PAPRs with loose-fitting facepieces were tested using a manikin that exhales aerosol particles.
SARS-CoV-2 spreads by infectious aerosols and droplets from the respiratory tract. Masks and respirators can reduce the transmission of infectious respiratory diseases by collecting these aerosols at the source. The ability of source control devices to block aerosols can be tested by expelling an aerosol through a headform using constant airflows, which are simpler, or cyclic airflows, which are more realistic but require more complex methods.
View Article and Find Full Text PDFMany respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited.
View Article and Find Full Text PDFTo limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment.
View Article and Find Full Text PDFThere is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment.
View Article and Find Full Text PDFAm J Infect Control
February 2022
Background: During the COVID-19 pandemic, face masks are used as source control devices to reduce the expulsion of respiratory aerosols from infected people. Modifications such as mask braces, earloop straps, knotting and tucking, and double masking have been proposed to improve mask fit however the data on source control are limited.
Methods: The effectiveness of mask fit modifications was determined by conducting fit tests on human subjects and simulator manikins and by performing simulated coughs and exhalations using a source control measurement system.
Face masks reduce the expulsion of respiratory aerosols produced during coughs and exhalations ("source control"). Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how the combined effects of masking, orientation, and distance affect the exposure of individuals to respiratory aerosols in indoor spaces.
View Article and Find Full Text PDFUniversal mask wearing is recommended to help control the spread of COVID-19. Masks reduce the expulsion of aerosols of respiratory fluids into the environment (called source control) and offer some protection to the wearer. Masks are often characterized using filtration efficiency, airflow resistance, and manikin or human fit factors, which are standard metrics used for personal protective devices.
View Article and Find Full Text PDFUniversal mask wearing is recommended by the Centers for Disease Control and Prevention to help control the spread of COVID-19. Masks reduce the expulsion of respiratory aerosols (called source control) and offer some protection to the wearer. However, masks vary greatly in their designs and construction materials, and it is not clear which are most effective.
View Article and Find Full Text PDFUniversal masking is one of the prevention strategies recommended by CDC to slow the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). As of February 1, 2021, 38 states and the District of Columbia had universal masking mandates. Mask wearing has also been mandated by executive order for federal property* as well as on domestic and international transportation conveyances.
View Article and Find Full Text PDFBackground: Engineered nanomaterials are increasingly being incorporated into synthetic materials as fillers and additives. The potential pathological effects of end-of-lifecycle recycling and disposal of virgin and nano-enabled composites have not been adequately addressed, particularly following incineration. The current investigation aims to characterize the cytotoxicity of incinerated virgin thermoplastics vs.
View Article and Find Full Text PDFUnlabelled: The methoxychlor metabolite, HPTE, was shown to inhibit P450-cholesterol side-chain cleavage (P450scc) activity resulting in decreased progesterone production by cultured ovarian follicular cells in previous studies. It is not known whether HPTE has any effect on progesterone formation by the corpus luteum.
Results: Exposure to 100 nM HPTE reduced progesterone production by luteal cells with progressive declines to <22% of control at 500 nM HPTE.
Exposure to the pesticide methoxychlor in rodents is linked to impaired steroid production, ovarian atrophy and reduced fertility. Following in vivo administration, it is rapidly converted by the liver to 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), the reported active metabolite. Both methoxychlor and HPTE have weak estrogenic and antiandrogenic activities, and these effects are thought to be mediated through the estrogen and androgen receptors, respectively.
View Article and Find Full Text PDFMethoxychlor (MC) was developed as a replacement for the banned pesticide DDT. After in vivo administration, it is metabolized in the liver to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is proposed to be the active agent. Both MC and HPTE have been shown to exhibit weak estrogenic and antiandrogenic activities, and they are thought to exert their effects through estrogen and androgen receptors, respectively.
View Article and Find Full Text PDFMethoxychlor (MC) is an insecticide that is presently used on agricultural crops, especially after the ban on the use of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) in the United States. Following administration in vivo, MC is converted to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is thought to be the active agent. However, both MC and HPTE have been reported to have weak estrogenic and antiandrogenic activities, and they are thought to exert their potential adverse (endocrine disruptive) effects through the estrogen and androgen receptors, respectively.
View Article and Find Full Text PDFMethoxychlor (MC) is an insecticide that is currently used on a variety of agricultural crops, especially following the ban of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) use in the United States. Following in vivo administration, MC is converted to 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), which is proposed to be the active agent. Both MC and HPTE have been demonstrated to exhibit weak estrogenic and antiandrogenic activities, and they are thought to exert their effects through estrogen or androgen receptors, respectively.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
June 2002
4-Tert-octylphenol (OP) is a breakdown product of 4-tert-octylphenol ethoxylate, which is a surfactant additive widely used in the manufacture of a variety of detergents and plastic products. OP has been reported to exhibit weak estrogenic activity in many assay systems. The studies described herein examined an unusual effect of OP in increasing constitutive testosterone levels of cultured Leydig cells from young adult rats.
View Article and Find Full Text PDF