Publications by authors named "Raymond Buser"

Thanks to chemical stabilization, aldehyde-assisted fractionation (AAF) of lignocellulosic biomass has recently emerged as a powerful tool for the production of largely uncondensed lignin. Depolymerization of AAF lignin via ether cleavage provides aromatic monomers at near theoretical yields based on ether cleavage and an oligomeric fraction that remains largely unexploited despite its unique material properties. Here, we present an in-depth analytical characterization of AAF oligomers derived from hardwood and softwood in order to elucidate their molecular structures.

View Article and Find Full Text PDF

Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101(Mms22) ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4.

View Article and Find Full Text PDF

Tight regulation of the MAP kinase Hog1 is crucial for survival under changing osmotic conditions. Interestingly, we found that Hog1 phosphorylates multiple upstream components, implying feedback regulation within the signaling cascade. Taking advantage of an unexpected link between glucose availability and Hog1 activity, we used quantitative single cell measurements and computational modeling to unravel feedback regulation operating in addition to the well-known adaptation feedback triggered by glycerol accumulation.

View Article and Find Full Text PDF

We have studied the possible role, in a plant glutamine synthetase (GS), of the different cysteinyl residues present in this enzyme. For this purpose we carried out the site-directed mutagenesis of the cDNA for alpha-GS polypeptide from Phaseolus vulgaris in the positions corresponding to Cys-92, Cys-159, and Cys-179, followed by heterologous expression in E. coli and enzymatic characterisation of WT and mutant proteins.

View Article and Find Full Text PDF