Publications by authors named "Raymond Behrendt"

Today, Fmoc SPPS is the method of choice for peptide synthesis. Very-high-quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward.

View Article and Find Full Text PDF

In our efforts to develop a universal solution to the problem of aspartimide formation in Fmoc SPPS, we investigated the application of our new β-trialkylmethyl protected aspartic acid building blocks to the synthesis of peptides containing the Asp-Gly motif. The N(α)-Fmoc aspartic acid β-tri-(ethyl/propyl/butyl)methyl esters were used in the synthesis of the classic model peptide scorpion toxin II (VKDGYI), and their effectiveness in minimising aspartimide formation during extended piperidine treatments was evaluated. Furthermore, we compared their efficacy against that of the commonly used approach of adding acids to the Fmoc deprotection solution.

View Article and Find Full Text PDF

Obtaining homogenous aspartyl-containing peptides via Fmoc/tBu chemistry is often an insurmountable obstacle. A generic solution for this issue utilising an optimised side-chain protection strategy that minimises aspartimide formation would therefore be most desirable. To this end, we developed the following new derivatives: Fmoc-Asp(OEpe)-OH (Epe = 3-ethyl-3-pentyl), Fmoc-Asp(OPhp)-OH (Php = 4-n-propyl-4-heptyl) and Fmoc-Asp(OBno)-OH (Bno = 5-n-butyl-5-nonyl).

View Article and Find Full Text PDF

We report a simplified procedure for the chemical ligation of peptides by using the sulfamylbutyryl linker as a mildly activating group capable of participating in ligation. When the peptidyl N-methylsulfonamide is directly added with excess thiols to ligation reactions, the speed of reaction is comparable to native chemical ligation.

View Article and Find Full Text PDF

Ultrafast IR spectroscopy is used to monitor the nonequilibrium backbone dynamics of a cyclic peptide in the amide I vibrational range with picosecond time resolution. A conformational change is induced by means of a photoswitch integrated into the peptide backbone. Although the main conformational change of the backbone is completed after only 20 ps, the subsequent equilibration in the new region of conformational space continues for times >16 ns.

View Article and Find Full Text PDF

The proposed pathway and mechanism of substrate entry and product egress in the hexameric D3 symmetric tricorn protease from Thermoplasma acidophilum were explored by crystallographic studies of ligand complexes and by structure-based mutagenesis. Obstruction of the pore within the 7-bladed beta-propeller (beta7) domain by alkylation or oxidation of an engineered double cysteine mutant strongly decreased enzymatic activities. In line herewith, the crystal structure of the tricorn protease in complex with a trideca-peptide inhibitor modifying the catalytic Ser965 revealed part of the peptide trapped inside the channel of the beta7 domain.

View Article and Find Full Text PDF

Femtosecond time-resolved spectroscopy on model peptides with built-in light switches combined with computer simulation of light-triggered motions offers an attractive integrated approach toward the understanding of peptide conformational dynamics. It was applied to monitor the light-induced relaxation dynamics occurring on subnanosecond time scales in a peptide that was backbone-cyclized with an azobenzene derivative as optical switch and spectroscopic probe. The femtosecond spectra permit the clear distinguishing and characterization of the subpicosecond photoisomerization of the chromophore, the subsequent dissipation of vibrational energy, and the subnanosecond conformational relaxation of the peptide.

View Article and Find Full Text PDF

In previous studies we have shown that light-induced cis/trans isomerization of the azobenzene moiety in cyclo-[Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-AMPB] [AMPB: (4-aminomethyl)phenylazobenzoic acid] leads both in the monocyclic and in the oxidized bicyclic form to markedly differentiated conformational states in DMSO, a fact that lends itself for photomodulation of the redox potential of such bis-cysteinyl-peptides. For this purpose water-soluble systems are required, and this was achieved by replacing three residues outside the Cys-Ala-Thr-Cys active-site motif of thioredoxin reductase with lysines. The resulting cyclo-[Lys-Cys-Ala-Thr-Cys-Asp-Lys-Lys-AMPB] fully retains its photoresponsive properties in water as well assessed by uv and CD measurements.

View Article and Find Full Text PDF

The cholecystokinin (CCK) receptor-1 (CCK1R) is a G protein-coupled receptor, which mediates important central and peripheral cholecystokinin actions. Our aim was to progress in mapping of the CCK1R binding site by identifying residues that interact with the methionine and phenylalanine residues of the C-terminal moiety of CCK because these are crucial for its binding and biological activity, and to determine whether CCK and the selective non-peptide agonist, SR-146,131, share a common binding site. Identification of putative amino acids of the CCK1R binding site was achieved by dynamics-based docking of the ligand CCK in a refined three-dimensional model of the CCK1R using, as constraints, previous results that identified contact points between residues of CCK and CCK1R (Kennedy, K.

View Article and Find Full Text PDF