Publications by authors named "Raymond A Wong"

Article Synopsis
  • * The development of combined ultrahigh vacuum-electrochemistry (UHV-EC) techniques allows researchers to analyze these interfaces by temporarily removing the liquid electrolyte and transferring samples to a vacuum for advanced analysis, bridging electrochemistry with UHV-based techniques.
  • * The research highlights the use of UHV-EC in conjunction with X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS) and scanning tunneling microscopy (STM), revealing insights into the electronic properties
View Article and Find Full Text PDF

Fluorescence and Raman scattering spectroscopies have been used in various research fields such as chemistry, electrochemistry, and biochemistry because they can easily obtain detailed information about molecules at interfaces with visible light. In particular, multimodal fluorescence and Raman scattering spectroscopy have recently attracted significant attention, which enables us to distinguish chemical species and their electronic states that are important for expressing various functions. However, a special strategy is required to perform simultaneous measurements because the cross sections of fluorescence and Raman scattering differ by as much as ∼10.

View Article and Find Full Text PDF

Altering electrochemical interfaces by using electrolyte effects or so-called "electrolyte engineering" provides a versatile means to modulate the electrochemical response. However, the long-standing challenge is going "beyond cyclic voltammetry" where electrolyte effects are interrogated from the standpoint of the interfacial properties of the electrode/electrolyte interface. Here, we employ ferrocene-terminated self-assembled monolayers as a molecular probe and investigate how the anion-dictated electrochemical responses are translated in terms of the electronic and structural properties of the electrode/monolayer/electrolyte interface.

View Article and Find Full Text PDF

Unexpected phenomena displayed by low-boron-doped diamond (BDD) electrodes are disclosed in the present work. Generally, the presence of sp nondiamond carbon impurities in BDD electrodes causes undesirable electrochemical properties, such as a reduced potential window and increased background current, etc. However, we found that the potential window and redox reaction in normally doped (1%) BDD and low-doped (0.

View Article and Find Full Text PDF

Carbon-based materials are regarded as an environmentally benign alternative to the conventional metal electrode used in electrochemistry from the viewpoint of sustainable chemistry. Among various carbon electrode materials, boron-doped diamond (BDD) exhibits superior electrochemical properties. However, it is still uncertain how surface chemical species of BDD influence the electrochemical performance, because of the difficulty in characterizing the surface species.

View Article and Find Full Text PDF

We explore the redox-dependent electronic and structural changes of ferrocene-terminated self-assembled monolayers (Fc SAMs) immersed in aqueous solution. By exploiting X-ray and ultraviolet photoelectron spectroscopy combined with an electrochemical cell (EC-XPS/UPS), we can electrochemically control the Fc SAMs and spectroscopically probe the induced changes with the ferrocene/ferrocenium (Fc/Fc) redox center (Fe oxidation state), formation of 1:1 Fc-ClO ion pairs, molecular orientation, and monolayer thickness. We further find the insignificant involvement of interfacial water in the Fc SAMs irrespective of redox state.

View Article and Find Full Text PDF

An ongoing challenge with lithium-oxygen (Li-O) batteries is in deciphering the oxygen evolution reaction (OER) process related to the slow decomposition of the insulating lithium peroxide (LiO). Herein, we shed light on the behavior of LiO oxidation by exploiting various in situ imaging, gas analysis, and electrochemical methods. At the low potentials 3.

View Article and Find Full Text PDF

The major challenge facing lithium-oxygen batteries is the insulating and bulk lithium peroxide discharge product, which causes sluggish decomposition and increasing overpotential during recharge. Here, we demonstrate an improved round-trip efficiency of ~80% by means of a mesoporous carbon electrode, which directs the growth of one-dimensional and amorphous lithium peroxide. Morphologically, the one-dimensional nanostructures with small volume and high surface show improved charge transport and promote delithiation (lithium ion dissolution) during recharge and thus plays a critical role in the facile decomposition of lithium peroxide.

View Article and Find Full Text PDF

In lithium-oxygen (Li-O2) batteries, it is believed that lithium peroxide (Li2O2) electrochemically forms thin films with thicknesses less than 10 nm resulting in capacity restrictions due to limitations in charge transport. Here we show unexpected Li2O2 film growth with thicknesses of ∼60 nm on a three-dimensional carbon nanotube (CNT) electrode incorporated with cerium dioxide (ceria) nanoparticles (CeO2 NPs). The CeO2 NPs favor Li2O2 surface nucleation owing to their strong binding toward reactive oxygen species (e.

View Article and Find Full Text PDF

The application of conventional solid polymer electrolyte (SPE) to lithium-oxygen (Li-O2) batteries has suffered from a limited active reaction zone due to thick SPE and subsequent lack of O2 gas diffusion route in the positive electrode. Here we present a new design for a three-dimensional (3-D) SPE structure, incorporating a carbon nanotube (CNT) electrode, adapted for a gas-based energy storage system. The void spaces in the porous CNT/SPE film allow an increased depth of diffusion of O2 gas, providing an enlarged active reaction zone where Li(+) ions, O2 gas, and electrons can interact.

View Article and Find Full Text PDF