Since the earliest investigations of olefin metathesis catalysis, light has been the choice for controlling the catalyst activity on demand. From the perspective of energy efficiency, temporal and spatial control, and selectivity, photochemistry is not only an attractive alternative to traditional thermal manufacturing techniques but also arguably a superior manifold for advanced applications like additive manufacturing (AM). In the last three decades, pioneering work in the field of ring-opening metathesis polymerization (ROMP) has broadened the scope of material properties achievable through AM, particularly using light as both an activating and deactivating stimulus.
View Article and Find Full Text PDFPatterning functional materials is a central challenge across many fields of science. The ability to lithographically fabricate micro- and nanostructures has been one of the most impactful technological breakthroughs of the last century. In part due to the complexity of the chemical processes in photoresists, there is a limited variety of materials that can currently be patterned by photolithography.
View Article and Find Full Text PDFDendronized block copolymers were synthesized by ruthenium-mediated ring-opening methathesis polymerization of exo-norbornene functionalized dendrimer monomers, and their self-assembly to dielectric mirrors was investigated. The rigid-rod main-chain conformation of these polymers drastically lowers the energetic barrier for reorganization, enabling their rapid self-assembly to long-range, highly ordered nanostructures. The high fidelity of these dielectric mirrors is attributed to the uniform polymer architecture achieved from the construction of discrete dendritic repeat units.
View Article and Find Full Text PDFColorful: enabled by their reduced capacity for chain entanglement, high-molecular-weight brush block copolymers can rapidly self-assemble to photonic crystals. The blending of two polymers of different molecular weight can predictably modulate the sizes of the polymer domains, giving rise to a facile means of precision tuning of these photonic-band-gap materials.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2012
The reduced chain entanglement of brush polymers over their linear analogs drastically lowers the energetic barriers to reorganization. In this report, we demonstrate the rapid self-assembly of brush block copolymers to nanostructures with photonic bandgaps spanning the entire visible spectrum, from ultraviolet (UV) to near infrared (NIR). Linear relationships were observed between the peak wavelengths of reflection and polymer molecular weights.
View Article and Find Full Text PDFThe synthesis of rigid-rod, helical isocyanate-based macromonomers was achieved through the polymerization of hexyl isocyanate and 4-phenylbutyl isocyanate, initiated by an exo-norbornene functionalized half-titanocene complex. Sequential ruthenium-mediated ring-opening metathesis polymerization of these macromonomers readily afforded well-defined brush block copolymers, with precisely tunable molecular weights ranging from high (1512 kDa) to ultrahigh (7119 kDa), while maintaining narrow molecular weight distributions (PDI = 1.08-1.
View Article and Find Full Text PDF