Publications by authors named "Raymond A Shaw"

Marine stratocumulus clouds are the "global reflectors," sharply contrasting with the underlying dark ocean surface and exerting a net cooling on Earth's climate. The magnitude of this cooling remains uncertain in part owing to the averaged representation of microphysical processes, such as the droplet-to-drizzle transition in global climate models (GCMs). Current GCMs parameterize cloud droplet size distributions as broad, cloud-averaged gammas.

View Article and Find Full Text PDF

Marine cloud brightening (MCB) is the deliberate injection of aerosol particles into shallow marine clouds to increase their reflection of solar radiation and reduce the amount of energy absorbed by the climate system. From the physical science perspective, the consensus of a broad international group of scientists is that the viability of MCB will ultimately depend on whether observations and models can robustly assess the scale-up of local-to-global brightening in today's climate and identify strategies that will ensure an equitable geographical distribution of the benefits and risks associated with projected regional changes in temperature and precipitation. To address the physical science knowledge gaps required to assess the societal implications of MCB, we propose a substantial and targeted program of research-field and laboratory experiments, monitoring, and numerical modeling across a range of scales.

View Article and Find Full Text PDF

Entrainment of dry air into clouds strongly influences cloud optical and precipitation properties and the response of clouds to aerosol perturbations. The response of cloud droplet size distributions to entrainment-mixing is examined in the Pi convection-cloud chamber that creates a turbulent, steady-state cloud. The experiments are conducted by injecting dry air with temperature (T) and flow rate (Q) through a flange in the top boundary, into the otherwise well-mixed cloud, to mimic the entrainment-mixing process.

View Article and Find Full Text PDF
Article Synopsis
  • - The ACE-ENA experiment utilized various optical sensors to measure cloud properties in the Eastern North Atlantic, focusing on shadow imaging, scattering, and holography techniques.
  • - In situ data from different measurement methods were compared to assess their effectiveness in analyzing cloud droplets up to 100 µm, resulting in tailored data processing for better accuracy.
  • - Notable improvements were made in data quality, including noise reduction for holography and out-of-focus corrections for shadow imaging, with direct liquid water content measurements showing better alignment with optical sensors at higher droplet concentrations.
View Article and Find Full Text PDF

Aerosol indirect effects are one of the leading contributors to cloud radiative properties relevant to climate. Aerosol particles become cloud droplets when the ambient relative humidity (saturation ratio) exceeds a critical value, which depends on the particle size and chemical composition. In the traditional formulation of this problem, only average, uniform saturation ratios are considered.

View Article and Find Full Text PDF

The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The study centered on 7 round-trips of the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later.

View Article and Find Full Text PDF

Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties.

View Article and Find Full Text PDF

The extent of droplet clustering in turbulent clouds has remained largely unquantified, and yet is of possible relevance to precipitation formation and radiative transfer. To that end, data gathered by an airborne holographic instrument are used to explore the three-dimensional spatial statistics of cloud droplet positions in homogeneous stratiform boundary-layer clouds. The three-dimensional radial distribution functions g(r) reveal unambiguous evidence of droplet clustering.

View Article and Find Full Text PDF
Article Synopsis
  • Ice nucleation is key for ice formation in clouds, affecting precipitation and climate, but its efficient initiation during contact with supercooled water drops has been poorly understood for 50 years.
  • Recent experiments show that mechanical agitation can lead to freezing in supercooled water drops when the contact lines are distorted, enhancing ice nucleation rates significantly.
  • The study proposes that reduced pressure due to interface curvature might explain the observed increases in freezing temperatures and emphasizes the importance of the contact line's movement in facilitating the nucleation process.
View Article and Find Full Text PDF

The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply.

View Article and Find Full Text PDF

Measuring the similarity of integral curves is fundamental to many important flow data analysis and visualization tasks such as feature detection, pattern querying, streamline clustering, and hierarchical exploration. In this paper, we introduce FlowString, a novel vocabulary approach that extracts shape invariant features from streamlines and utilizes a string-based method for exploratory streamline analysis and visualization. Our solution first resamples streamlines by considering their local feature scales.

View Article and Find Full Text PDF

Optical properties and precipitation efficiency of atmospheric clouds are largely determined by turbulent mixing with their environment. When cloud liquid water is reduced upon mixing, droplets may evaporate uniformly across the population or, in the other extreme, a subset of droplets may evaporate completely, leaving the remaining drops unaffected. Here, we use airborne holographic imaging to visualize the spatial structure and droplet size distribution at the smallest turbulent scales, thereby observing their response to entrainment and mixing with clear air.

View Article and Find Full Text PDF

A matched filter method is provided for obtaining improved particle size estimates from digital in-line holograms. This improvement is relative to conventional reconstruction and pixel counting methods for particle size estimation, which is greatly limited by the CCD camera pixel size. The proposed method is based on iterative application of a sign matched filter in the Fourier domain, with sign meaning the matched filter takes values of ±1 depending on the sign of the angular spectrum of the particle aperture function.

View Article and Find Full Text PDF

Holographic measurements of the clustering of electrically charged, inertial particles in homogenous and isotropic turbulent flow reveal novel particle dynamics. When particles are identically charged, Coulomb repulsion introduces a length scale below which inertial clustering is suppressed such that the radial distribution function (RDF) mimics that of a nonideal gas. The result is described with a Fokker-Planck framework modeling inertial clustering as a diffusion-drift process modified to include Coulomb interaction.

View Article and Find Full Text PDF

We report experimental evidence of spatial clustering of dense particles in homogenous, isotropic turbulence at high Reynolds numbers. The dissipation-scale clustering becomes stronger as the Stokes number increases and is found to exhibit similarity with respect to the droplet Stokes number over a range of experimental conditions (particle diameter and turbulent energy dissipation rate). These findings are in qualitative agreement with recent theoretical and computational studies of inertial particle clustering in turbulence.

View Article and Find Full Text PDF

We report laboratory observations of higher freezing temperatures when an ice-forming nucleus is near the surface of an undercooled water drop than when the nucleus is immersed in the drop. The nucleation rate at the water surface is a factor of 10(10) greater than in bulk water, thereby complementing and providing evidence for homogeneous surface crystallization, which has been hypothesized recently. Interpretation of the data via classical nucleation theory shows that the free energy of formation of a critical ice germ is decreased by a factor of approximately 2 when the substrate is near the air-water interface.

View Article and Find Full Text PDF

The spatial phase resulting from the digital reconstruction of an in-line hologram of a particle field is shown to yield a unique pattern that can be used for particle detection. This phase signature is present only when viewed along with the reference light. The existence of the phase pattern is verified computationally and confirmed in laboratory experiments with holograms of calibrated glass spheres.

View Article and Find Full Text PDF

Poor axial precision caused, in part, by large depth of focus (tau) has been a vexing problem in extraction of particle position from digital in-line holograms. A simple method is proposed to combat this depth-of-focus difficulty. The method is based on decoupling of size and position information.

View Article and Find Full Text PDF

An in-line holographic system for in situ detection of atmospheric cloud particles [Holographic Detector for Clouds (HOLODEC)] has been developed and flown on the National Center for Atmospheric Research C-130 research aircraft. Clear holograms are obtained in daylight conditions at typical aircraft speeds of 100 m s(-1). The instrument is fully digital and is interfaced to a control and data-acquisition system in the aircraft via optical fiber.

View Article and Find Full Text PDF