Publications by authors named "Rayman T N Tjokrodirijo"

Upon infection of host cells, releases a multitude of effector enzymes into the cell's cytoplasm that hijack a plethora of cellular activities, including the host ubiquitination pathways. Effectors belonging to the SidE-family are involved in noncanonical serine phosphoribosyl ubiquitination of host substrate proteins contributing to the formation of a Legionella-containing vacuole that is crucial in the onset of Legionnaires' disease. This dynamic process is reversed by effectors called Dups that hydrolyze the phosphodiester in the phosphoribosyl ubiquitinated protein.

View Article and Find Full Text PDF
Article Synopsis
  • - Epstein-Barr virus (EBV), linked to infectious mononucleosis and various cancers, persistently infects over 90% of adults and undermines innate immune responses, particularly by regulating type I interferon (IFN I) production. - The study identifies EBV nuclear antigen 3A (EBNA3A) as a key player in this immune evasion, showing that it interacts with the histone acetyltransferase P300 and the transcription factor interferon regulatory factor 3 (IRF3), both crucial for IFNβ induction. - EBNA3A's binding inhibits IRF3's access to the IFNβ promoter, suggesting that this viral protein plays a crucial role in dampening the body's antiviral
View Article and Find Full Text PDF

Dendritic cell (DC) activation and function are underpinned by profound changes in cellular metabolism. Several studies indicate that the ability of DCs to promote tolerance is dependent on catabolic metabolism. Yet the contribution of AMP-activated kinase (AMPK), a central energy sensor promoting catabolism, to DC tolerogenicity remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to better classify uveal melanoma (UM) cell lines by examining their genetic and expression profiles, particularly focusing on identifying any underlying genetic causes for their behavior.
  • Researchers analyzed 14 UM cell lines using techniques like next-generation sequencing and SNP arrays to assess protein and mRNA expression, and to identify genetic variants.
  • Results indicated that cell lines Mel285 and Mel290, which do not have typical UM mutations, possess distinct genetic alterations and expression profiles, making them potentially unsuitable for research on therapeutic targets for UM.
View Article and Find Full Text PDF

The integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds, and , inhibiting PARK7 and in cells by covalently and selectively targeting its critical residue, Cys106.

View Article and Find Full Text PDF

Ubiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, , comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue.

View Article and Find Full Text PDF

Purpose: The availability of (neo)antigens and the infiltration of tumors by (neo)antigen-specific T cells are crucial factors in cancer immunotherapy. In this study, we aimed to investigate the targetability of (neo)antigens in advanced progessive melanoma and explore the potential for continued T-cell-based immunotherapy.

Experimental Design: We examined a cohort of eight patients with melanoma who had sequential metastases resected at early and later time points.

View Article and Find Full Text PDF

Glycans play a pivotal role in biology. However, because of the low-affinity of glycan-protein interactions, many interaction pairs remain unknown. Two important glycoproteins involved in B-cell biology are the B-cell receptor and its secreted counterpart, antibodies.

View Article and Find Full Text PDF

IgG3 is unique among the IgG subclasses due to its extended hinge, allotypic diversity and enhanced effector functions, including highly efficient pathogen neutralisation and complement activation. It is also underrepresented as an immunotherapeutic candidate, partly due to a lack of structural information. Here, we use cryoEM to solve structures of antigen-bound IgG3 alone and in complex with complement components.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based proteomics profiling has undoubtedly increased the knowledge about cellular processes and functions. However, its applicability for paucicellular sample analyses is currently limited. Although new approaches have been developed for single-cell studies, most of them have not (yet) been standardized and/or require highly specific (often home-built) devices, thereby limiting their broad implementation, particularly in non-specialized settings.

View Article and Find Full Text PDF

The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (FcɣR). FcɣRIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies.

View Article and Find Full Text PDF

Developments in mass spectrometry (MS)-based analyses of glycoproteins have been important to study changes in glycosylation related to disease. Recently, the characteristic pattern of oxonium ions in glycopeptide fragmentation spectra had been used to assign different sets of glycopeptides. In particular, this was helpful to discriminate between -GalNAc and -GlcNAc.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the second-leading cause of cancer death worldwide due in part to a high proportion of patients diagnosed at advanced stages of the disease. For this reason, many efforts have been made towards new approaches for early detection and prognosis. Cancer-associated aberrant glycosylation, especially the Tn and STn antigens, can be detected using the macrophage galactose-type C-type lectin (MGL/CLEC10A/CD301), which has been shown to be a promising tool for CRC prognosis.

View Article and Find Full Text PDF