Publications by authors named "Raye Chen-Hua Yeow"

Miniature locomotion robots with the ability to navigate confined environments show great promise for a wide range of tasks, including search and rescue operations. Soft miniature locomotion robots, as a burgeoning field, have attracted significant research interest due to their exceptional terrain adaptability and safety features. Here, a fully-soft centimeter-scale miniature crawling robot directly powered by fluid kinetic energy generated by an electrohydraulic actuator is introduced.

View Article and Find Full Text PDF

Background: Chronic stroke patients usually experience reduced hand functions, impeding their ability to perform activities of daily living (ADLs) independently. Additionally, improvements in hand functions by physical therapy beyond six months after the initial onset of stroke are much slower than in the earlier months. As such, chronic stroke patients could benefit from an assistive device to enhance their hand functions, allowing them to perform ADLs independently daily.

View Article and Find Full Text PDF

The development of soft robotic hand exoskeletons for rehabilitation has been well-reported in the literature, whereby the emphasis was placed on the development of soft actuators for flexion and extension. Little attention was focused on developing the glove interface and attachments of actuators to the hand. As these hand exoskeletons are largely developed for personnel with impaired hand function for rehabilitation, it may be tedious to aid the patients in donning and doffing the glove, given that patients usually have stiff fingers exhibiting high muscle tone.

View Article and Find Full Text PDF

The development of the field of soft robotics has led to the exploration of novel techniques to manufacture soft actuators, which provide distinct advantages for wearable assistive robotics. One subset of these soft pneumatic actuators is conventionally developed from silicone, fabrics, and thermoplastic polyurethane (TPU). Each of these materials in isolation possesses limitations of low-stress capacity, low-design complexity, and high-input pressure requirements, respectively.

View Article and Find Full Text PDF

The evolution of wearable technologies has led to the development of novel types of sensors customized for a wide range of applications. Wearable sensors need to possess a low form factor and be ergonomic, causing minimal impediment of the user's natural movement. Various principles have been explored to meet these requirements, ranging from optical, magnetic, resistive flex sensing to 3D printed sensors and liquid metals such as those using eutectic gallium-indium.

View Article and Find Full Text PDF

Leg motion is essential to everyday tasks, yet many face a daily struggle due to leg motion impairment. Traditional robotic solutions for lower limb rehabilitation have arisen, but they may bare some limitations due to their cost. Soft robotics utilizes soft, pliable materials which may afford a less costly robotic solution.

View Article and Find Full Text PDF

Freeform liquid three-dimensional printing (FL-3DP) is a promising new additive manufacturing process that uses a yield stress gel as a temporary support, enabling the processing of a broader class of inks into complex geometries, including those with low viscosities or long solidification kinetics that were previously not processable. However, the full exploitation of these advantages for the fabrication of complex multilateral structures has been hindered by difficulties in controlling the interfaces between inks and supports. In this work, an in-depth study of the rheological properties and interfacial stabilities between a nanoclay-modified support and silicone-based inks enabled a better understanding of the impact printing parameters have on the extruded filament morphology, and thus on printing resolutions.

View Article and Find Full Text PDF

Fiber-reinforced soft pneumatic actuators (FR-SPAs) are among the most successful soft actuators in the soft robotics community considering their structural strength, motion range, and force output. Inspired by the pneumatic artificial muscle, the bending-type tubular SPAs have also been applied with fiber winding for body reinforcement and then utilized in many applications. Due to their superior utility and popularity, FR-SPAs have been extensively modeled using different methods.

View Article and Find Full Text PDF

Rapid advancements of artificial intelligence of things (AIoT) technology pave the way for developing a digital-twin-based remote interactive system for advanced robotic-enabled industrial automation and virtual shopping. The embedded multifunctional perception system is urged for better interaction and user experience. To realize such a system, a smart soft robotic manipulator is presented that consists of a triboelectric nanogenerator tactile (T-TENG) and length (L-TENG) sensor, as well as a poly(vinylidene fluoride) (PVDF) pyroelectric temperature sensor.

View Article and Find Full Text PDF

Objective: This randomized controlled feasibility study investigates the ability for clinical application of the Brain-Computer Interface-based Soft Robotic Glove (BCI-SRG) incorporating activities of daily living (ADL)-oriented tasks for stroke rehabilitation.

Methods: Eleven recruited chronic stroke patients were randomized into BCI-SRG or Soft Robotic Glove (SRG) group. Each group underwent 120-minute intervention per session comprising 30-minute standard arm therapy and 90-minute experimental therapy (BCI-SRG or SRG).

View Article and Find Full Text PDF

Soft robotic fingers have shown great potential for use in prostheses due to their inherent compliant, light, and dexterous nature. Recent advancements in sensor technology for soft robotic systems showcase their ability to perceive and respond to static cues. However, most of the soft fingers for use in prosthetic applications are not equipped with sensors which have the ability to perceive texture like humans can.

View Article and Find Full Text PDF

Background And Objective: Immobility of the lower extremity due to medical conditions such as stroke can lead to medical complications such as deep vein thrombosis or ankle contracture, and thereafter prolonged recovery process of the patients. In this preliminary clinical study, we aimed to examine the effect of a novel soft robotic sock device, capable of providing assisted ankle exercise, in improving blood flow in the lower limb to prevent the complication of strokes such as deep vein thrombosis and joint contracture.

Methods: Stroke patients were recruited ( = 17) to compare patients using the conventional pneumatic compression device with our robotic sock device on separate days.

View Article and Find Full Text PDF

This article presents a versatile soft crawling robot capable of rapid and effective locomotion. The robot mainly consists of two vacuum-actuated spring actuators and two electrostatic actuators. By programming the actuation sequences of different actuators, the robot is able to achieve two basic modes of locomotion: linear motion and turning.

View Article and Find Full Text PDF

The modeling and experimentation of a pneumatic actuation system for the development of a soft robotic therapeutic glove is proposed in this article for the prevention of finger deformities in rheumatoid arthritis (RA) patients. The Rehabilitative Arthritis Glove (RA-Glove) is a soft robotic glove fitted with two internal inflatable actuators for lateral compression and massage of the fingers and their joints. Two mechanical models to predict the indentation and bending characteristics of the inflatable actuators based on their geometrical parameters will be presented and validated with experimental results.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbcbv44qd2skrel4po360f2fuus6s98mu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once