Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.
View Article and Find Full Text PDFPropagation of membrane tension mediates mechanical signal transduction along surfaces of live cells and sets the time scale of mechanical equilibration of cell membranes. Recent studies in several cell types and under different conditions revealed a strikingly wide variation range of the tension propagation speeds including extremely low ones. The latter suggests a possibility of long-living inhomogeneities of membrane tension crucially affecting mechano-sensitive membrane processes.
View Article and Find Full Text PDFAmyloid fibril formation is a central biochemical process in pathology and physiology. Over decades, substantial advances were made in elucidating the mechanisms of amyloidogenesis, its links to disease, and the production of functional supramolecular structures. While the term "amyloid" denotes starch-like features of these assemblies, no evidence of amyloidogenic behavior of polysaccharides has been so far reported.
View Article and Find Full Text PDFMembrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood.
View Article and Find Full Text PDFThe transient cellular organelles known as migrasomes, which form during cell migration along retraction fibers, have emerged as a crutial factor in various fundamental cellular processes and pathologies. These membrane vesicles originate from local membrane swellings, encapsulate specific cytoplasmic content, and are eventually released to the extracellular environment or taken up by recipient cells. Migrasome biogenesis entails a sequential membrane remodeling process involving a complex interplay between various molecular factors such as tetraspanin proteins, and mechanical properties like membrane tension and bending rigidity.
View Article and Find Full Text PDFSemiflexible fiber gels such as collagen and fibrin have unique nonlinear mechanical properties that play an important role in tissue morphogenesis, wound healing, and cancer metastasis. Optical tweezers microrheology has greatly contributed to the understanding of the mechanics of fibrous gels at the microscale, including its heterogeneity and anisotropy. However, the explicit relationship between micromechanical properties and gel deformation has been largely overlooked.
View Article and Find Full Text PDFEbola virus (EBOV) is an enveloped virus that must fuse with the host cell membrane in order to release its genome and initiate infection. This process requires the action of the EBOV envelope glycoprotein (GP), encoded by the virus, which resides in the viral envelope and consists of a receptor binding subunit, GP1, and a membrane fusion subunit, GP2. Despite extensive research, a mechanistic understanding of the viral fusion process is incomplete.
View Article and Find Full Text PDFTetraspanin 4, a protein with four transmembrane helices and three connecting loops, senses membrane curvature and localizes to membrane tubes. This enrichment in tubular membranes enhances its diverse interactions. While the transmembrane part of the protein likely contributes to curvature sensitivity, the possible roles of the ectodomains in curvature sensitivity of tetraspanin 4 are still unknown.
View Article and Find Full Text PDFRed blood cells (RBCs) are the simplest cell types with complex dynamical and viscoelastic phenomenology. While the mechanical rigidity and the flickering noise of RBCs have been extensively investigated, an accurate determination of the constitutive equations of the relaxational kinetics is lacking. Here we measure the force relaxation of RBCs under different types of tensional and compressive extension-jump protocols by attaching an optically trapped bead to the RBC membrane.
View Article and Find Full Text PDFEur Phys J E Soft Matter
September 2023
The remarkably low sliding friction of articular cartilage in the major joints such as hips and knees, which is crucial for its homeostasis and joint health, has been attributed to lipid bilayers forming lubricious boundary layers at its surface. The robustness of such layers, and thus their lubrication efficiency at joint pressures, depends on the lipids forming them, including cholesterol which is a ubiquitous component, and which may act to strengthen of weaken the bilayer. In this work, a systematic study using an atomic force microscope (AFM) was carried out to understand the effect of cholesterol on the nanomechanical stability of two saturated phospholipids, DSPC (1,2-distearoyl-sn-glycero-3-phosphatidlycholine) and DPPC (1,2-dipalmitoyl-sn-glycero- phosphatidylcholine), that differ in acyl chain lengths.
View Article and Find Full Text PDFFusion of biological membranes is fundamental in various physiological events. The fusion process involves several intermediate stages with energy barriers that are tightly dependent on the mechanical and physical properties of the system, one of which is membrane tension. As previously established, the late stages of fusion, including hemifusion diaphragm and pore expansions, are favored by membrane tension.
View Article and Find Full Text PDFMigrasomes are newly discovered cell organelles forming by local swelling of retraction fibers. The migrasome formation critically depends on tetraspanin proteins present in the retraction fiber membranes and is modulated by the membrane tension and bending rigidity. It remained unknown how and in which time sequence these factors are involved in migrasome nucleation, growth, and stabilization, and what are the possible intermediate stages of migrasome biogenesis.
View Article and Find Full Text PDFFibrous hydrogels are a key component of soft animal tissues. They support cellular functions and facilitate efficient mechanical communication between cells. Due to their nonlinear mechanical properties, fibrous materials display non-trivial force propagation at the microscale, that is enhanced compared to that of linear-elastic materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Multiple biological and pathological processes, such as signaling, cell-cell communication, and infection by various viruses, occur at the plasma membrane. The eukaryotic plasma membrane is made up of thousands of different lipids, membrane proteins, and glycolipids, and its composition is dynamic and constantly changing. Due to the central importance of membranes on the one hand and their complexity on the other, membrane model systems are instrumental for interrogating membrane-related biological processes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Multiple membrane-shaping and remodeling processes are associated with tetraspanin proteins by yet unknown mechanisms. Tetraspanins constitute a family of proteins with four transmembrane domains present in every cell type. Prominent examples are tetraspanin4 and CD9, which are required for the fundamental cellular processes of migrasome formation and fertilization, respectively.
View Article and Find Full Text PDFOptical tweezers allow precise measurement of forces and distances with piconewton and nanometer precision, and have thus been instrumental in elucidating the mechanistic details of various biological processes. Some examples include the characterization of motor protein activity, studies of protein-DNA interactions, and characterizing protein folding trajectories. The use of optical tweezers (OT) to study membranes is, however, much less abundant.
View Article and Find Full Text PDFMature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S).
View Article and Find Full Text PDFCorrection for 'Live cell single molecule tracking and localization microscopy of bioorthogonally labeled plasma membrane proteins' by Andres I. König et al., Nanoscale, 2020, 12, 3236-3248, DOI: 10.
View Article and Find Full Text PDFActin is one of the most studied cytoskeleton proteins showing a very rich span of structures and functions. For example, adenosine triphosphate (ATP)-assisted polymerization of actin is used to push protrusions forward in a mechanism that enables cells to crawl on a substrate. In this process, the chemical energy released from the hydrolysis of ATP is what enables force generation.
View Article and Find Full Text PDFTracking the localization and mobility of individual proteins in live cells is key for understanding how they mediate their function. Such information can be obtained from single molecule imaging techniques including as Single Particle Tracking (SPT) and Single Molecule Localization Microscopy (SMLM). Genetic code expansion (GCE) combined with bioorthogonal chemistry offers an elegant approach for direct labeling of proteins with fluorescent dyes, holding great potential for improving protein labeling in single molecule applications.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are widely studied regarding their role in cell-to-cell communication and disease, as well as for applications as biomarkers or drug delivery vehicles. EVs contain membrane and intraluminal proteins, affecting their structure and thereby likely their functioning. Here, we use atomic force microscopy for mechanical characterization of erythrocyte, or red blood cell (RBC), EVs from healthy individuals and from patients with hereditary spherocytosis (HS) due to ankyrin deficiency.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are emerging as important mediators of cell-cell communication as well as potential disease biomarkers and drug delivery vehicles. However, the mechanical properties of these vesicles are largely unknown, and processes leading to microvesicle-shedding from the plasma membrane are not well understood. Here an in depth atomic force microscopy force spectroscopy study of the mechanical properties of natural EVs is presented.
View Article and Find Full Text PDFA large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2017
Emerging technologies use cell plasma membrane vesicles or "blebs" as an intermediate to form molecularly complete, planar cell surface mimetics that are compatible with a variety of characterization tools and microscopy methods. This approach enables direct incorporation of membrane proteins into supported lipid bilayers without using detergents and reconstitution and preserves native lipids and membrane species. Such a system can be advantageous as in vitro models of in vivo cell surfaces for study of the roles of membrane proteins as drug targets in drug delivery, host-pathogen interactions, tissue engineering, and many other bioanalytical and sensing applications.
View Article and Find Full Text PDF