Antigen sparing is an important strategy for pandemic vaccine development because of the limitation of worldwide vaccine production during disease outbreaks. However, several clinical studies have demonstrated that the current aluminum (Alum)-adjuvanted influenza vaccines fail to sufficiently enhance immune responses to meet licensing criteria. Here, we used pandemic H7N9 as a model virus to demonstrate that a 10-fold lower amount of vaccine antigen combined with Alum and TLR9 agonist can provide stronger protective effects than using Alum as the sole adjuvant.
View Article and Find Full Text PDFWe present detailed investigations of our previously reported observations of the 3(1)Delta(g) and 4(1)Delta(g) Rydberg states having separated-atom limits of Na(3s) + Na(4d) and Na(3s) + Na(4f), respectively, of Na(2) using high-resolution cw optical-optical double resonance spectroscopic measurements and analyzing the assigned rovibrational energy levels both by the individual linear fit method and the Dunham polynomial fit method. We have sorted out e/f-parity observed energy levels, and then from the Dunham polynomial fits of the e-parity levels, we have derived molecular constants and constructed Rydberg-Klein-Rees potentials of the 3(1)Delta(g) and 4(1)Delta(g) states, which appear to be twin states with an avoided crossing at R(c) = 4.10 A and a splitting of DeltaE(c) = 94 cm(-1).
View Article and Find Full Text PDFThe nd (1)Delta(g) (n = 6, 7, and 8) Rydberg states of Na(2) correlating with the asymptotic limits of Na(3s) + Na(nd) have been observed using high-resolution cw optical-optical double resonance spectroscopy corresponding to the rovibrational transitions X (1)Sigma(g)(+)(v("),J(")) + h nu(pump) --> B (1)Pi(u)(v('),J(')) + h nu(probe) --> nd (1)Delta(g)(v,J). Totals of 104, 83, and 45 identified rovibrational e/f-parity levels in the ranges of v = 0-11, 11 < or = J < or = 83; v = 0-10, 11 < or = J < or = 83; and v = 0-10, 11 < or = J < or = 65, have been assigned to the 6d (1)Delta(g), 7d (1)Delta(g), and 8d (1)Delta(g) states, respectively. Using the observed quantum levels, molecular constants were determined from the Dunham fits of the e-parity levels and the Rydberg-Klein-Rees potential curves were constructed for the nd (1)Delta(g)(n = 6-8) states.
View Article and Find Full Text PDFThe 71Pig Rydberg state of Na2 correlating with the separated atom limit Na(3s) + Na(5p) has been observed using high-resolution cw optical-optical double resonance spectroscopy. A total of 104 identified rovibrational levels in the range v = 0-12 and 11 = J = 44 have been assigned to the 71Pig state. Dunham coefficients were determined, and the Rydberg-Klein-Rees potential curve in the range of R = 2.
View Article and Find Full Text PDFThe phenomenon of electronic orbital angular momentum L uncoupled from its internuclear axis has been observed in the sodium dimer using high-resolution cw optical-optical double-resonance spectroscopy. When L uncoupling occurs, the degeneracy of Lambda doubling is removed. In our experiment, the intermediate B (1)Pi(u) state of Na(2) is excited from the thermally populated ground X (1)Sigma(g) (+) state by a single-line Ar(+) laser.
View Article and Find Full Text PDFThe doubly excited valence (3p+3p) 2 (1)Delta(g) state of Na(2) is experimentally observed by using optical-optical double resonance spectroscopy. A single line Ar(+) laser (a total of nine lines) was used to pump the sodium dimers from thermally populated ground state X (1)Sigma(g) (+) to the intermediate B (1)Pi(u) state. Then, a single mode Ti:sapphire laser was used to probe the doubly excited 2 (1)Delta(g) state.
View Article and Find Full Text PDF