Publications by authors named "Ray T Syvitski"

The jadomycins are a family of secondary metabolites produced by S. venezuelae ISP5230. Specific jadomycins have been shown to possess a variety of anticancer, antifungal, and antibacterial properties, with different molecular mechanisms of action.

View Article and Find Full Text PDF

A bacterial alpha-d-glucopyranosyl-1-phosphate thymidylyltransferase was found to couple four hexofuranosyl-1-phosphates, as well as a pentofuranosyl-1-phosphate, with deoxythymidine 5'-triphosphate, providing access to furanosyl nucleotides. The enzymatic reaction mixtures were analyzed by electrospray ionization mass spectrometry and NMR spectroscopy to determine the anomeric stereochemistry of furanosyl nucleotide products. This is the first demonstration of a nucleotidylyltransferase discriminating between diastereomeric mixtures of sugar-1-phosphates to produce stereopure, biologically relevant furanosyl nucleotides.

View Article and Find Full Text PDF

The jadomycins are a series of natural products produced by Streptomyces venzuelae ISP5230 in response to ethanol shock. A unique structural feature of these angucyclines is the oxazolone ring, the formation of which is catalyzed by condensation of a biosynthetic aldehyde intermediate and an amino acid. The feeding of enantiomeric forms of alpha-amino acids indicates that the amino acid is incorporated by S.

View Article and Find Full Text PDF

We report the first 2,6-dideoxysugar-O-glycosyltransferase with substrate flexibility at the 2 position, confirm the function of a putative NDP-hexose 2,3-dehydratase in the jadomycin B biosynthetic gene cluster and deduce the substrate flexibility of downstream enzymes in l-digitoxose assembly, enabling reprogramming of biosynthetic gene clusters to modify sugar substituents.

View Article and Find Full Text PDF

[structure: see text] A novel oxazolone ring-opening and interconversion process between the two jadomycin diastereomeric forms has been characterized by NMR spectroscopy. An analogue, dalomycin T, has been isolated for the first time and does not undergo interconversion.

View Article and Find Full Text PDF

1H NMR was used to investigate the molecular structure, and dynamic properties of soluble, recombinant, substrate-free human heme oxygenase (apohHO) on a comparative basis with similar studies on the substrate complex. Limited but crucial sequence-specific assignments identify five conserved secondary structural elements, and the detection of highly characteristic dipolar or H-bond interactions among these elements together with insignificant chemical shift differences confirm a strongly conserved folding topology of helices C-H relative to that of substrate complexes in either solution or the crystal. The correction of the chemical shifts for paramagnetic and porphyrin ring current influences in the paramagnetic substrate complex reveals that the strength of all but one of the numerous relatively robust H-bonds are conserved in apohHO, and similar ordered water molecules are located near these H-bond donors as observed in the substrate complexes.

View Article and Find Full Text PDF

A solution NMR spectroscopic study of the cyanide-inhibited, substrate-bound complex of uniformly (15)N-labeled human heme oxygenase, hHO, has led to characterization of the active site with respect to the nature and identity of strong hydrogen bonds and the occupation of ordered water molecules within both the hydrogen bonding network and an aromatic cluster on the distal side. [(1)H-(15)N]-HSQC spectra confirm the functionalities of several key donors in particularly robust H-bonds, and [(1)H-(15)N]HSQC-NOESY spectra lead to the identification of three additional robust H-bonds, as well as the detection of two more relatively strong H-bonds whose identities could not be established. The 3D NMR experiments provided only a modest, but important, extension of assignments because of the loss of key TOCSY cross-peaks due to the line broadening from a dynamic heterogeneity in the active site.

View Article and Find Full Text PDF

The molecular structure and dynamic properties of the active site environment of HmuO, a heme oxygenase (HO) from the pathogenic bacterium Corynebacterium diphtheriae, have been investigated by (1)H NMR spectroscopy using the human HO (hHO) complex as a homology model. It is demonstrated that not only the spatial contacts among residues and between residues and heme, but the magnetic axes that can be related to the direction and magnitude of the steric tilt of the FeCN unit are strongly conserved in the two HO complexes. The results indicate that very similar contributions of steric blockage of several meso positions and steric tilt of the attacking ligand are operative.

View Article and Find Full Text PDF

Solution 1H NMR is used to probe the environments of the donor protons of eight strong hydrogen bonds on the distal side of the heme substrate in the cyanide-inhibited, substrate-bound complex of human heme oxygenase, hHO. It is demonstrated that significant magnetization transfer from the bulk water signal to the eight labile protons does not result from chemical exchange, but from direct nuclear Overhauser effect due to the dipolar interaction of these labile protons with "ordered" water molecules. The enzyme labile proton to water proton distances are estimated at approximately 3 A.

View Article and Find Full Text PDF

The presence of variable static hemin orientational disorder about the alpha-gamma-meso axis in the substrate complexes of mammalian heme oxygenase, together with the incomplete averaging of a second, dynamic disorder, for each hemin orientation, has led to NMR spectra with severe spectral overlap and loss of key two-dimensional correlations that seriously interfere with structural characterization in solution. We demonstrate that the symmetric substrate, 2,4-dimethyldeuterohemin, yields a single solution species for which the dynamic disorder is sufficiently rapid to allow effective and informative (1)H NMR structural characterization. A much more extensive, effective, and definitive NMR characterization of the cyanide-inhibited, symmetric heme complex of human heme oxygenase shows that the active site structure, with some minor differences, is essentially the same as that for the native protohemin in solution and crystal.

View Article and Find Full Text PDF