Optical neural networks (ONNs) are promising hardware platforms for next-generation neuromorphic computing due to their high parallelism, low latency, and low energy consumption. However, previous integrated photonic tensor cores (PTCs) consume numerous single-operand optical modulators for signal and weight encoding, leading to large area costs and high propagation loss to implement large tensor operations. This work proposes a scalable and efficient optical dot-product engine based on customized multi-operand photonic devices, namely multi-operand optical neuron (MOON).
View Article and Find Full Text PDFAt present, pesticides are widely used in the cultivation of crops. Glyphosate is widely used in many pesticides. Glyphosate ingestion can cause a series of health problems.
View Article and Find Full Text PDFIn this paper, we demonstrated the design and experimental results of the near-infrared lab-on-a-chip optical biosensor platform that monolithically integrates the MRR and the on-chip spectrometer on the silicon-on-insulator (SOI) wafer, which can eliminate the external optical spectrum analyzer for scanning the wavelength spectrum. The symmetric add-drop MRR biosensor is designed to have a free spectral range (FSR) of ∼19 nm and a bulk sensitivity of ∼73 nm/RIU; then the drop-port output resonance peaks are reconstructed from the integrated spatial-heterodyne Fourier transform spectrometer (SHFTS) with the spectral resolution of ∼3.1 nm and the bandwidth of ∼50 nm, which results in the limit of detection of 0.
View Article and Find Full Text PDFIn the context of continued spread of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 and the emergence of new variants, the demand for rapid, accurate, and frequent detection is increasing. Moreover, the new predominant strain, Omicron variant, manifests more similar clinical features to those of other common respiratory infections. The concurrent detection of multiple potential pathogens helps distinguish SARS-CoV-2 infection from other diseases with overlapping symptoms, which is significant for providing tailored treatment to patients and containing the outbreak.
View Article and Find Full Text PDFOn-chip broadband optical spectrometers that cover the entire tissue transparency window (λ = 650-1050 nm) with high resolution are highly demanded for miniaturized biosensing and bioimaging applications. The standard spatial heterodyne Fourier transform spectrometer (SHFTS) requires a large number of Mach-Zehnder interferometer (MZI) arrays to obtain a broad spectral bandwidth while maintaining high resolution. Here, we propose a novel type of SHFTS integrated with a subwavelength grating coupler (SWGC) for the dual-polarization bandpass sampling on the SiN platform to solve the intrinsic trade-off limitation between the bandwidth and resolution of the SHFTS without having an outrageous number of MZI arrays or adding additional active photonic components.
View Article and Find Full Text PDFThe sudden rise of the worldwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in early 2020 has called into drastic action measures to perform instant detection and reduce the rate of spread. Common clinical and nonclinical diagnostic testing methods have been partially effective in satisfying the increasing demand for fast detection point-of-care (POC) methods to slow down further spread. However, accurate point-of-risk diagnosis of this emerging viral infection is paramount as the need for simultaneous standard operating procedures and symptom management of SARS-CoV-2 will be the norm for years to come.
View Article and Find Full Text PDFDensely integrated active photonics is key for next generation on-chip networks for addressing both footprint and energy budget concerns. However, the weak light-matter interaction in traditional active Silicon optoelectronics mandates rather sizable device lengths. The ideal active material choice should avail high index modulation while being easily integrated into Silicon photonics platforms.
View Article and Find Full Text PDFThe slow light sensor techniques have been applied to bio-related detection in the past decades. However, similar testing-systems are too large to carry to a remote area for diagnosis or point-of-care testing. This study demonstrated a fully automatic portable biosensing system based on the microring resonator.
View Article and Find Full Text PDFLow-cost and conformal phased array antennas (PAAs) on flexible substrates are of particular interest in many applications. The major deterrents to developing flexible PAA systems are the difficulty in integrating antenna and electronics circuits on the flexible surface, as well as the bendability and oxidation rate of radiating elements and electronics circuits. In this research, graphene ink was developed from graphene flakes and used to inkjet print the radiating element and the active channel of field effect transistors (FETs).
View Article and Find Full Text PDFAn effective-area photovoltaic efficiency of 1.27% in power conversion, excluding the grid metal contact area and under 1 sun, AM 1.5G conditions, has been obtained for the p-GaN/i-InGaN/n-GaN diode arrays epitaxially grown on (111)-Si.
View Article and Find Full Text PDFThe past two decades have witnessed the stagnation of the clock speed of microprocessors followed by the recent faltering of Moore's law as nanofabrication technology approaches its unavoidable physical limit. Vigorous efforts from various research areas have been made to develop power-efficient and ultrafast computing machines in this post-Moore's law era. With its unique capacity to integrate complex electro-optic circuits on a single chip, integrated photonics has revolutionized the interconnects and has shown its striking potential in optical computing.
View Article and Find Full Text PDFDefect-engineered photonic crystal (PC) microcavities were fabricated by UV photolithography and their corresponding sensitivities to biomarkers in patient plasma samples were compared for different resonant microcavity characteristics of quality factor Q and biomarker fill fraction. Three different biomarkers in plasma from pancreatic cancer patients were experimentally detected by conventional L13 defect-engineered microcavities without nanoholes and higher sensitivity L13 PC microcavities with nanoholes. 8.
View Article and Find Full Text PDFMid-infrared (mid-IR) absorption spectroscopy based on integrated photonic circuits has shown great promise in trace-gas sensing applications in which the mid-IR radiation directly interacts with the targeted analyte. In this paper, considering monolithic integrated circuits with quantum cascade lasers (QCLs) and quantum cascade detectors (QCDs), the InGaAs-InP platform is chosen to fabricate passive waveguide gas sensing devices. Fully suspended InGaAs waveguide devices with holey photonic crystal waveguides (HPCWs) and subwavelength grating cladding waveguides (SWWs) are designed and fabricated for mid-infrared sensing at λ = 6.
View Article and Find Full Text PDFMode volume overlap factor is one of the parameters determining the sensitivity of a sensor. In past decades, many approaches have been proposed to increase the mode volume overlap. As the increased mode volume overlap factor results in reduced mode confinement, the maximum value is ultimately determined by the micro- and nano-structure of the refractive index distribution of the sensing devices.
View Article and Find Full Text PDFIntegrated optical computing attracts increasing interest recently as Moore's law approaches the physical limitation. Among all the approaches of integrated optical computing, directed logic that takes the full advantage of integrated photonics and electronics has received lots of investigation since its first introduction in 2007. Meanwhile, as integrated photonics matures, it has become critical to develop automated methods for synthesizing optical devices for large-scale optical designs.
View Article and Find Full Text PDFDue to the projected saturation of Moore's law, as well as the drastically increasing trend of bandwidth with lower power consumption, silicon photonics has emerged as one of the most promising alternatives that has attracted a lasting interest due to the accessibility and maturity of ultra-compact passive and active integrated photonic components. In this Letter, we demonstrate a ripple-carry electro-optic 2-bit full adder using microdisks, which replaces the core part of an electrical full adder by optical counterparts and uses light to carry signals from one bit to the next with high bandwidth and low power consumption per bit. All control signals of the operands are applied simultaneously within each clock cycle.
View Article and Find Full Text PDFSilicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.
View Article and Find Full Text PDFThe dc-biased optical orthogonal frequency division multiplexing (DCO-OFDM) system is experimentally demonstrated as an appealing candidate in future visible light communication (VLC) system. However, the intrinsic high PAPR drawback that the DCO-OFDM system suffers from still needs to be addressed and few effective approach has been found so far. To deal with this problem, in this paper, the tone reservation (TR) technique based the time domain kernel matrix (TKM-TR) schemes for reducing the PAPR are studied and applied to DCO-OFDM system.
View Article and Find Full Text PDFAll-optical switches have been considered as a promising solution to overcome the fundamental speed limit of the current electronic switches. However, the lack of a suitable third-order nonlinear material greatly hinders the development of this technology. Here we report the observation of ultrahigh third-order nonlinearity about 0.
View Article and Find Full Text PDFTo detect biochemicals with ultrahigh sensitivity, efficiency, reproducibility, and specificity has been the holy grail in the development of nanosensors. In this work, we report an innovative type of photonic-plasmonic hybrid Raman nanosensor integrated with electrokinetic manipulation by rational design, which offers dual mechanisms that enhance the sensitivity for molecule detection directly in solution. For the first time, we integrate large arrays of synthesized plasmonic nanocapsules with densely surface distributed silver (Ag) nanoparticles (NPs) on lithographically patterned photonic crystal slabs via electric-field assembling.
View Article and Find Full Text PDFCompared to the conventional strip waveguide microring resonators, subwavelength grating (SWG) waveguide microring resonators have better sensitivity and lower detection limit due to the enhanced photon-analyte interaction. As sensors, especially biosensors, are usually used in absorptive ambient environment, it is very challenging to further improve the detection limit of the SWG ring resonator by simply increasing the sensitivity. The high sensitivity resulted from larger mode-analyte overlap also brings significant absorption loss, which deteriorates the quality factor of the resonator.
View Article and Find Full Text PDFThis paper reports a 100% inkjet printed transistor with a short channel of approximately 1 µm with an operating speed up to 18.21 GHz. Printed electronics are a burgeoning area in electronics development, but are often stymied by the large minimum feature size.
View Article and Find Full Text PDFIn this paper, the peak-to-average power ratio (PAPR) reduction problem with tone injection (TI) in the direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) system is investigated, which is formulated as a tough integer combinatorial optimization problem. Since it is a challenging task to find the global optimal solution, the branch-and-bound method (BBM), which is extensively employed to deal with the NP-hard problem, is introduced to solve this problem. By splitting the superior branches and pruning the inferior branches, the close optimal solution is obtained.
View Article and Find Full Text PDFIn this paper, unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating (SWG) waveguides are studied and demonstrated. The SWG structure consists of periodic silicon pillars in the propagation direction with a subwavelength period. Effective sensing region in the SWG microring resonator includes not only the top and side of the waveguide, but also the space between the silicon pillars on the light propagation path.
View Article and Find Full Text PDFIn an on-chip silicon-organic hybrid electro-optic (EO) modulator, the mode overlap with EO materials, in-device effective r, and propagation loss are among the most critical factors that determine the performance of the modulator. Various waveguide structures have been proposed to optimize these factors, yet there is a lack of comprehensive consideration on all of them. In this Letter, a one-dimensional (1D) photonic crystal (PC) slot waveguide structure is proposed that takes all these factors into consideration.
View Article and Find Full Text PDF