Histone post-translational modifications (PTMs) play important roles in many biological processes, including gene regulation and chromatin dynamics, and are thus of high interest across many fields of biological research. Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) is a powerful tool to profile histone PTMs in vivo. This method, however, is largely dependent on the specificity and availability of suitable commercial antibodies.
View Article and Find Full Text PDFEpigenetic modifications are important gene regulatory mechanisms conserved in plants, animals, and fungi. Chromatin reader domains are protein-protein/DNA interaction modules acting within the chromatin-modifying complex to function as molecular interpreters of the epigenetic code. Understanding how reader proteins recognize specific epigenetic modifications and mediate downstream chromatin and transcriptional events is fundamental to many biological processes.
View Article and Find Full Text PDFThe ability of cells to perceive and translate versatile cues into differential chromatin and transcriptional states is critical for many biological processes. In plants, timely transition to a flowering state is crucial for successful reproduction. EARLY BOLTING IN SHORT DAY (EBS) is a negative transcriptional regulator that prevents premature flowering in Arabidopsis thaliana.
View Article and Find Full Text PDFThe ability of a cell to dynamically switch its chromatin between different functional states constitutes a key mechanism regulating gene expression. Histone mark "readers" display distinct binding specificity to different histone modifications and play critical roles in regulating chromatin states. Here, we show a plant-specific histone reader SHORT LIFE (SHL) capable of recognizing both H3K27me3 and H3K4me3 via its bromo-adjacent homology (BAH) and plant homeodomain (PHD) domains, respectively.
View Article and Find Full Text PDF