We demonstrate the selective area growth of InGaAs nanowires (NWs) on GaAs (111)B substrates using hydride vapor phase epitaxy (HVPE). A high growth rate of more than 50m hand high aspect ratio NWs were obtained. Composition along the NWs was investigated by energy dispersive x-ray spectroscopy giving an average indium composition of 84%.
View Article and Find Full Text PDFControl over the distribution of dopants in nanowires is essential for regulating their electronic properties, but perturbations in nanowire microstructure may affect doping. Conversely, dopants may be used to control nanowire microstructure including the generation of twinning superlattices (TSLs)-periodic arrays of twin planes. Here the spatial distribution of Be dopants in a GaAs nanowire with a TSL is investigated using atom probe tomography.
View Article and Find Full Text PDFOff-axis electron holography was used to reveal remote doping in GaAs nanowires occurring duringannealing in a transmission electron microscope. Dynamic changes to the electrostatic potential caused by carbon dopant diffusion upon annealing were measured across GaAs nanowires with radial p-p+ core-shell junctions. Electrostatic potential profiles were extracted from holographic phase maps and built-in potentials () and depletion layer widths (DLWs) were estimated as function of temperature over 300-873 K.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2022
Vertical nanowire (NW) arrays are the basis for a variety of nanoscale devices. Understanding heat transport in these devices is an important concern, especially for prospective thermoelectric applications. To facilitate thermal conductivity measurements on as-grown NW arrays, a common NW-composite device architecture was adapted for use with the 3ω method.
View Article and Find Full Text PDFWith continuing advances in semiconductor nanowire (NW) growth technologies, synthesis of tailored crystal structures is gradually becoming a reality. Mixtures of the bulk zinc blende (ZB) and wurtzite (WZ) phase can be achieved in III-V NWs under various growth conditions. Among the possible crystal structures, the twinning superlattice (TSL) has attracted particular interest for tuning photonic and electronic properties.
View Article and Find Full Text PDFTwinning superlattices (TSLs) are a growing class of semiconductor structures proposed as a means of phonon and optical engineering in nanowires (NWs). In this work, we examine TSL formation in Te-doped GaAs NWs grown by a self-assisted vapor-liquid-solid mechanism (with a Ga droplet as the seed particle), using selective-area molecular beam epitaxy. In these NWs, the TSL structure is comprised of alternating zincblende twins, whose formation is promoted by the introduction of Te dopants.
View Article and Find Full Text PDFGaAs-InGaAs-GaAs core-shell-shell nanowire (NW) structures were grown by gas source molecular beam epitaxy using the selective-area, self-assisted, vapor-liquid-solid method. The structural, morphological, and optical properties of the NWs were examined for different growth conditions of the InGaAs shell. With increasing In concentration of the InGaAs shell, the growth transitioned from preferential deposition at the NW base to the Stranski-Krastanov growth mode where InGaAs islands formed along the NW length.
View Article and Find Full Text PDFA review of models for determining the thermoelectric transport coefficients [Formula: see text] (Seebeck coefficient), [Formula: see text] (electrical conductivity), and [Formula: see text] (electronic thermal conductivity) is presented, for the cases of bulk and nanowire structures, along with derivations and a discussion of calculation methods. Results for the transport coefficients in GaAs, InAs, InP and InSb are used to determine the thermoelectric figure of merit, where an enhancement by two orders of magnitude is found for the nanowire case as compared with the bulk. The optimal electron concentration is determined as a function of nanowire diameter for both background and modulation doped nanowires.
View Article and Find Full Text PDFRecent investigations of III-V semiconductor nanowires have revealed periodic zinc-blende twins, known as twinning superlattices, that are often induced by a high-impurity dopant concentration. In the present study, the relationship between the nanowire morphology, crystal structure, and impurity dopant concentration (Te and Be) of twinning superlattices has been studied in GaAs nanowires grown by molecular beam epitaxy using the self-assisted (with a Ga droplet) vapor-liquid-solid process. The contact angle between the Ga droplet and the nanowire top facet decreased linearly with the dopant concentration, whereas the period of the twinning superlattices increased with the doping concentration and was proportional to the nanowire radius.
View Article and Find Full Text PDFThe incorporation of Si into vapor-liquid-solid GaAs nanowires often leads to p-type doping, whereas it is routinely used as an n-dopant of planar layers. This property limits the applications of GaAs nanowires in electronic and optoelectronic devices. The strong amphoteric behavior of Si in nanowires is not yet fully understood.
View Article and Find Full Text PDFWe investigate the accuracy of rigorous coupled-wave analysis (RCWA) for near-field computations within cylindrical GaAs nanowire solar cells and discover excellent accuracy with low computational cost at long incident wavelengths but poor accuracy at short incident wavelengths. These near fields give the carrier generation rate, and their accurate determination is essential for device modeling. We implement two techniques for increasing the accuracy of the near fields generated by RCWA and give some guidance on parameters required for convergence along with an estimate of their associated computation times.
View Article and Find Full Text PDFA betavoltaic device is reported that directly converts beta energy from a Ni radioisotope into electrical energy by impact ionization in a GaP nanowire array. The GaP nanowires are grown in a periodic array by molecular beam epitaxy on silicon using the self-assisted vapor-liquid-solid method. By growing GaP nanowires with large packing fraction and length on the order of the maximum beta range, the nanowires can efficiently capture the betas with high energy conversion efficiency while using inexpensive Si substrates.
View Article and Find Full Text PDFThe superconducting proximity effect is probed experimentally in Josephson junctions fabricated with InAs nanowires contacted by Nb leads. Contact transparencies [Formula: see text] are observed. The electronic phase coherence length at low temperatures exceeds the channel length.
View Article and Find Full Text PDFGallium arsenide nanowires have shown considerable promise for use in applications in which the absorption of light is required. When the nanowires are oriented vertically, a considerable amount of light can be absorbed, leading to significant heating effects. Thus, it is important to understand the threshold power densities that vertical GaAs nanowires can support, and how the nanowire morphology is altered under these conditions.
View Article and Find Full Text PDFVertically oriented and ordered GaAs nanowire arrays have been grown by the self-assisted mechanism using substrates prepared with nano-patterned oxide templates. Patterned Ga-assisted GaAs nanowire growth on (111) silicon by molecular beam epitaxy showed that the axial and radial growth rates increased with increasing interhole spacing. A model is described which accounts for the correlation of the final length and diameter with pattern pitch.
View Article and Find Full Text PDFThe photothermal properties of vertically etched gallium arsenide nanowire arrays are examined using Raman spectroscopy. The nanowires are arranged in square lattices with a constant pitch of 400 nm and diameters ranging from 50 to 155 nm. The arrays were illuminated using a 532 nm laser with an incident energy density of 10 W/mm(2).
View Article and Find Full Text PDFWe report fabrication methods, including metal masks and dry etching, and demonstrate highly ordered vertical gallium arsenide nanowire arrays. The etching process created high aspect ratio, vertical nanowires with insignificant undercutting from the mask, allowing us to vary the diameter from 30 nm to 400 nm with a pitch from 250 nm to 1100 nm and length up to 2.2 μm.
View Article and Find Full Text PDFEffective electron mobilities are obtained by transport measurements on InAs nanowire field-effect transistors at temperatures ranging from 10 to 200 K. The mobility increases with temperatures below ∼30-50 K, and then decreases with temperatures above 50 K, consistent with other reports. The magnitude and temperature dependence of the observed mobility can be explained by Coulomb scattering from ionized surface states at typical densities.
View Article and Find Full Text PDFNanotechnology
January 2009
An experimental approach to achieving phase purity in nanowires through molecular beam epitaxy growth is presented. Superlattice heterostructured nanowires were grown, consisting of alternating layers of GaAsP and GaP. The observed core-multishell heterostructure, extending axially and radially, is attributed to simultaneous Au-assisted vertical growth and diffusion-limited radial growth along lateral nanowire facets.
View Article and Find Full Text PDFWe report the use of Te as an n-type dopant in GaAs core-shell p-n junction nanowires for use in photovoltaic devices. Te produced significant change in the morphology of GaAs nanowires grown by the vapor-liquid-solid process in a molecular beam epitaxy system. The increase in radial growth of nanowires due to the surfactant effect of Te had a significant impact on the operating characteristics of photovoltaic devices.
View Article and Find Full Text PDFPoly(ethylene imine) functionalized carbon nanotube thin films, prepared using the vacuum filtration method, were decorated with Au nanoparticles by in situ reduction of HAuCl4 under mild conditions. These Au nanoparticles were subsequently employed for the growth of GaAs nanowires (NWs) by the vapor-liquid-solid process in a gas source molecular beam epitaxy system. The process resulted in the dense growth of GaAs NWs across the entire surface of the single-walled nanotube (SWNT) films.
View Article and Find Full Text PDFThis letter reports on the growth, structure, and luminescent properties of individual multiple quantum well (MQW) AlGaAs nanowires (NWs). The composition modulations (MQWs) are obtained by alternating the elemental flux of Al and Ga during the molecular beam epitaxy growth of the AlGaAs wire on GaAs (111)B substrates. Transmission electron microscopy and energy dispersive X-ray spectroscopy performed on individual NWs are consistent with a configuration composed of conical segments stacked along the NW axis.
View Article and Find Full Text PDF