A generalized nonlinear Schrödinger equation is studied with the interplay between Kerr nonlinearity and intensity-dependent dispersion. The supported soliton solutions are characterized analytically in different families by the pseudo-potential method, in terms of Maimistov and Cuspon solitons for different ratio between the intensity-dependent dispersion and Kerr nonlinearity. Direct numerical simulations also agree with our analytical formulas.
View Article and Find Full Text PDFSimulation and programming of current quantum computers as Noisy Intermediate-Scale Quantum (NISQ) devices represent a hot topic at the border of current physical and information sciences. The quantum walk process represents a basic subroutine in many quantum algorithms and plays an important role in studying physical phenomena. Simulating quantum walk processes is computationally challenging for classical processors.
View Article and Find Full Text PDFWe propose a straightforward and effective approach to design, by pattern-tunable strain-engineering, photonic topological insulators supporting high quality factors edge states. Chiral strain-engineering creates opposite synthetic gauge fields in two domains resulting in Landau levels with the same energy spacing but different topological numbers. The boundary of the two topological domains hosts robust time-reversal and spin-momentum-locked edge states, exhibiting high quality factors due to continuous strain modulation.
View Article and Find Full Text PDFIn order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete understanding of the degradation in the purity of squeezed light is demanded. By implementing machine-learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise quantum state tomography for continuous variables, through the experimentally measured data generated from the balanced homodyne detectors. Compared with the maximum likelihood estimation method, which suffers from time-consuming and overfitting problems, a well-trained machine fed with squeezed vacuum and squeezed thermal states can complete the task of reconstruction of the density matrix in less than one second.
View Article and Find Full Text PDFA scheme for magnetic-free optical nonreciprocity in an ensemble of four-level cold atoms is proposed by exploiting the directional four-wave mixing effect. Using experimentally achievable parameters, the nonreciprocal optical responses of the system can be observed and the conversion on nonreciprocal transmission and nonreciprocal phase shift can be implemented. These nonreciprocal phenomena originate from the directional phase matching, which breaks the time-reversal symmetry and dynamic reciprocity of the cold atomic system.
View Article and Find Full Text PDFWe propose a novel platform for quantum metrology based on qubit states of two Bose-Einstein condensate solitons, optically manipulated, trapped in a double-well potential, and coupled through nonlinear Josephson effect. We describe steady-state solutions in different scenarios and perform a phase space analysis in the terms of population imbalance-phase difference variables to demonstrate macroscopic quantum self-trapping regimes. Schrödinger-cat states, maximally path-entangled (N00N) states, and macroscopic soliton qubits are predicted and exploited to distinguish the obtained macroscopic states in the framework of binary (non-orthogonal) state discrimination problem.
View Article and Find Full Text PDFQuantum entanglement is an essential ingredient for the absolute security of quantum communication. Generation of continuous-variable entanglement or two-mode squeezing between light fields based on the effect of electromagnetically induced transparency (EIT) has been systematically investigated in this work. Here, we propose a new scheme to enhance the degree of entanglement between probe and coupling fields of coherent-state light by introducing a two-photon detuning in the EIT system.
View Article and Find Full Text PDFRealizing the topological bands of helical states poses a challenge in studying ultracold atomic gases. Motivated by the recent experimental success in realizing chiral optical ladders, here we present a scheme for synthesizing topological quantum matter, especially the quantum spin Hall phase, in the chiral optical ladders. More precisely, we first establish the synthetic pseudo-spin-orbit coupling and Zeeman splitting in the chiral ladders.
View Article and Find Full Text PDFThe astrophysical reach of current and future ground-based gravitational-wave detectors is mostly limited by quantum noise, induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be an effective strategy to mitigate such quantum noise and it is currently used in advanced detectors. However, current squeezing cannot improve the noise across the whole spectrum because of the Heisenberg uncertainty principle: when shot noise at high frequencies is reduced, radiation pressure at low frequencies is increased.
View Article and Find Full Text PDFSoliton solutions are studied for paraxial wave propagation with intensity-dependent dispersion. Although the corresponding Lagrangian density has a singularity, analytical solutions, derived by the pseudo-potential method and the corresponding phase diagram, exhibit one- and two-humped solitons with almost perfect agreement to numerical solutions. The results obtained in this work reveal a hitherto unexplored area of soliton physics associated with nonlinear corrections to wave dispersion.
View Article and Find Full Text PDFFrom optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, transitions between extreme waves are allowed. However, these have never been experimentally observed because control strategies are still missing.
View Article and Find Full Text PDFWith the wave interferometric approach, we study how extrinsically coherent waves excitation can dramatically alter the overall scattering properties, resulting in tailoring the energy assignment between radiation and dissipation, as well as filtering multipolar resonances. As an illustration, we consider cylindrical passive systems encountered by arbitrary configurations of incident waves with various illuminating directions, phases, and intensities. With formulas for dissipation and radiation powers, we demonstrate that a coherent superposition of incident waves extrinsically interferes with the targeted channels in a desirable way.
View Article and Find Full Text PDFBy embedding a PT-symmetric (pseudo-Hermitian) system into a large Hermitian one, we disclose the relations between PT-symmetric quantum theory and weak measurement theory. We show that the weak measurement can give rise to the inner product structure of PT-symmetric systems, with the preselected state and its postselected state resident in the dilated conventional system. Typically in quantum information theory, by projecting out the irrelevant degrees and projecting onto the subspace, even local broken PT-symmetric Hamiltonian systems can be effectively simulated by this weak measurement paradigm.
View Article and Find Full Text PDFDisorder is emerging as a strategy for fabricating random laser sources with very promising materials, such as perovskites, for which standard laser cavities are not effective or too expensive. We need, however, different fabrication protocols and technologies for reducing the laser threshold and controlling its emission. Here, we demonstrate an effectively solvent-engineered method for high-quality perovskite thin films on a flexible polyimide substrate.
View Article and Find Full Text PDFBound states in the continuum (BICs) of periodic lattices have been the recent focus in a variety of photonic nanostructures. Motivated by the recent results about the photons evolving in BIC structures, we investigate the quantum decay of entangled biphotons through disordered photonic lattices. We report that the persistence of bound states in disordered photonic lattices leads to an interplay between the BIC and disorder-induced Anderson localized states.
View Article and Find Full Text PDFWith theoretical analyses and numerical calculations, we show that a passive scatterer at the sub-wavelength scale can simultaneously exhibit both nearly zero forward scattering (NZFS) and nearly zero backward scattering (NZBS). It is related to the interference of dipolar quadrupole modes of different origin, leading to coexistence of Kerker's first and second conditions at the same time. For optical frequencies, we propose two different sets of composited materials in multi-layered nano-structures, i.
View Article and Find Full Text PDFWe propose an all-optical-control scheme to simultaneously realize parity-time (𝒫𝒯)-symmetric and 𝒫𝒯-antisymmetric susceptibilities along the propagation direction of light by applying an external magnetic field. Through the light-atom interaction within a double-Λ configuration, the resulting position-dependent susceptibilities for the interacting fields can be manipulated through the relative phase between them. In particular, for the probe field, one can switch its refractive index from the 𝒫𝒯-symmetry to 𝒫𝒯-antisymmetry by just varying the phase.
View Article and Find Full Text PDFConsidering matter wave bright solitons from weakly coupled Bose-Einstein condensates trapped in a double-well potential, we study the formation of macroscopic non-classical states, including Schrödinger-cat superposition state and maximally path entangled N00N-state. We examine these macroscopic states by Mach-Zehnder interferometer in the context of parity measurements, which has been done to obtain Heisenberg limit accuracy for linear phase shift measurement. We reveal that the ratio of two-body scattering length to intra-well hopping parameter can be measured with the scaling beyond this limit by using nonlinear phase shift with interacting quantum solitons.
View Article and Find Full Text PDFTo explore resonance phenomena in the nonlinear region, we show by experimental measurements and theoretical analyses that resonance happens in modulation instability from non-instantaneous nonlinearities in photorefractive crystals. With a temporally periodic modulation in the external bias voltage, corresponding to a modulation in the nonlinear strength, an enhancement in the visibility of MI at resonant frequency is reported through spontaneous optical pattern formations. Theoretical curves obtained from a nonlinear non-instantaneous Schrödinger equation give good agreement to experimental data.
View Article and Find Full Text PDFWe propose and analyze an effective scheme to generate hyper-Raman scattering via inhibiting electromagnetically induced transparency (EIT) in a monolayer graphene under a magnetic field. By solving the Schrödinger-Maxwell formalism, we derive explicitly analytical expressions for linear susceptibility, nonlinear susceptibility, and generated Raman electric field under the steady-state condition. Based on dressed-state theory, our results show a competition between EIT and hyper-Raman scattering, and the hyper-Raman process is totally dominant when multiphoton destructive interference is completely suppressed.
View Article and Find Full Text PDFThe Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields.
View Article and Find Full Text PDFWe reveal a controllable manipulation of anomalous interactions between Airy beams in nonlocal nematic liquid crystals numerically. With the help of an in-phase fundamental Gaussian beam, attraction between in-phase Airy beams can be suppressed or become a repulsive one to each other; whereas the attraction can be strengthened when the Gaussian beam is out-of-phase. In contrast to the repulsive interaction in local media, stationary bound states of breathing Airy soliton pairs are found in nematic liquid crystals.
View Article and Find Full Text PDFWith the conservation of power, a phase diagram defined by amplitude square and phase of scattering coefficients for each spherical harmonic channel is introduced as a universal map for any passive electromagnetic scatterers. Physically allowable solutions for scattering coefficients in this diagram clearly show power competitions among scattering and absorption. It also illustrates a variety of exotic scattering or absorption phenomena, from resonant scattering, invisible cloaking, to coherent perfect absorber.
View Article and Find Full Text PDFTunneling-induced quantum interference experienced by an incident probe in the asymmetric double AlGaAs/GaAs quantum well (QW) structure can be modulated by means of an external control light beam and the tunable coupling strengths of resonant tunneling. These phenomena can be exploited to devise a novel intracavity medium to control Goos-Hänchen (GH) shifts of a mid-infrared probe beam incident on a cavity. For a suitably designed QW structure, our results show that maximum negative shift of 2.
View Article and Find Full Text PDFWe study ultrafast excitonic population inversion resulting from the interaction of a semiconductor quantum dot (SQD) with localized surface plasmons. The plasmonic enhanced fields are generated when a metallic nanoparticle (MNP) is subject to a nonlinear chirped few-cycle pulse train. By numerically solving the time-dependent Bloch equations beyond the rotating-wave approximation, we show that the complete population inversion can be achieved for small interparticle distance and the dynamic in population inversion exhibits a steplike transition between absorption and amplifying.
View Article and Find Full Text PDF