Spindlin1 is a unique multivalent epigenetic reader that facilitates ribosomal RNA transcription. In this study, we provide molecular and structural basis by which Spindlin1 acts in complex with C11orf84 to preferentially recognize non-canonical bivalent mark of trimethylated lysine 4 and lysine 9 present on the same histone H3 tail (H3K4me3K9me3). We demonstrate that C11orf84 binding stabilizes Spindlin1 and enhances its association with bivalent H3K4me3K9me3 mark.
View Article and Find Full Text PDFGenome Res
November 2020
It is widely recognized that noncoding genetic variants play important roles in many human diseases, but there are multiple challenges that hinder the identification of functional disease-associated noncoding variants. The number of noncoding variants can be many times that of coding variants; many of them are not functional but in linkage disequilibrium with the functional ones; different variants can have epistatic effects; different variants can affect the same genes or pathways in different individuals; and some variants are related to each other not by affecting the same gene but by affecting the binding of the same upstream regulator. To overcome these difficulties, we propose a novel analysis framework that considers convergent impacts of different genetic variants on protein binding, which provides multiscale information about disease-associated perturbations of regulatory elements, genes, and pathways.
View Article and Find Full Text PDFMesenchymal stromal/stem cells (MSCs) reside in many human tissues and comprise a heterogeneous population of cells with self-renewal and multi-lineage differentiation potential, making them useful in regenerative medicine. It remains inconclusive whether MSCs isolated from different tissue sources exhibit variations in biological features. In this study, we derived MSCs from adipose tissue (AT-MSC) and compact bone (CB-MSC).
View Article and Find Full Text PDFThe histone lysine demethylase KDM5 family is implicated in normal development and stem cell maintenance by epigenetic modulation of histone methylation status. Deregulation of the KDM5 family has been reported in various types of cancers, including hematological malignancies. However, their transcriptional regulatory roles in the context of leukemia remain unclear.
View Article and Find Full Text PDFInt J Mol Sci
September 2019
Acute myeloid leukemia (AML) is a heterogeneous disease that is characterized by distinct cytogenetic or genetic abnormalities. Recent discoveries in cancer epigenetics demonstrated a critical role of epigenetic dysregulation in AML pathogenesis. Unlike genetic alterations, the reversible nature of epigenetic modifications is therapeutically attractive in cancer therapy.
View Article and Find Full Text PDFReactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity.
View Article and Find Full Text PDFUmbilical cord blood is a valuable source of hematopoietic stem cells. While cytokine stimulation can induce ex vivo hematopoietic cell proliferation, attempts have been made to use epigenetic-modifying agents to facilitate stem cell expansion through the modulation of cellular epigenetic status. However, the potential global effect of these modifying agents on epigenome raises concerns about the functional normality of the expanded cells.
View Article and Find Full Text PDFHematopoietic stem cell (HSC) is a rare cell population, which is capable of self-renewal and differentiation to all blood lineages. The clinical potential of HSCs for treating hematological disorders has led to the use of cytokine stimulation for ex vivo expansion. However, little is known about the molecular features of the HSC populations expanded under different cytokine combinations.
View Article and Find Full Text PDFHOX genes are frequently dysregulated in human leukaemia with the gene rearrangement between mixed lineage leukaemia (MLL) and partner genes. The resultant MLL fusion proteins are known to mediate leukaemia through disruption of the normal epigenetic regulation at the target gene loci. To elucidate the pathogenic role of MLL fusion proteins in HOX dysregulation in leukaemia, we generated a novel haematopoietic lineage-specific Mll-Een knock-in mouse model using a Cre-mediated inversion strategy.
View Article and Find Full Text PDFActivation of the stem cell transcriptional circuitry is an important event in cancer development. Although cancer cells demonstrate a stem cell-like gene expression signature, the epigenetic regulation of pluripotency-associated genes in cancers remains poorly understood. In this study, we characterized the epigenetic regulation of the pluripotency-associated genes NANOG, OCT4, c-MYC, KLF4, and SOX2 in a variety of cancer cell lines and in primary tumor samples, and investigated the re-activation of pluripotency regulatory circuits in cancer progression.
View Article and Find Full Text PDFObjective: Mixed lineage leukemia (MLL) gene rearrangement is commonly observed in human leukemias. Many of the resultant MLL fusion proteins are found correlated with Ras signaling. Nevertheless, Ras mutations have only been reported in a small subset of MLL-rearranged leukemia.
View Article and Find Full Text PDFMouse ES cells can differentiate into all three germ layers of the embryo but are generally excluded from the trophoblast lineage. Here we show that ES cells deficient in DNA methylation can differentiate efficiently into trophoblast derivatives. In a genome-wide screen we identified the transcription factor Elf5 as methylated and repressed in ES cells, and hypomethylated and expressed in TS and methylation-deficient ES cells.
View Article and Find Full Text PDFDNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES) cells, embryonic germ (EG) cells, sperm, trophoblast stem (TS) cells, and primary embryonic fibroblasts (pMEFs).
View Article and Find Full Text PDFThe remarkable stability of gene expression in somatic cells is exemplified by the way memory of an active gene state is retained when an endoderm cell nucleus is transplanted to an enucleated egg. Here we analyse the mechanism of a similar example of epigenetic memory. We find that memory can persist through 24 cell divisions in the absence of transcription and applies to the expression of the myogenic gene MyoD in non-muscle cell lineages of nuclear transplant embryos.
View Article and Find Full Text PDFChronic hepatitis B virus (HBV) infection is one of the major causes of hepatocellular carcinoma. HBV encodes an oncogenic hepatitis B virus X protein (HBx), which can transactivate host cell transcriptional machinery and mediate cellular transformation. To disclose the early genetic response in HBx-mediated transformation process, we constructed a conditional HBx-expressing hepatocyte cell line, which allows us to compare the gene expression profiles under controllable HBx induction.
View Article and Find Full Text PDF