A steerable parametric array loudspeaker (PAL) aims to steer a highly directional audio beam without the need to mechanically rotate the source. The Gaussian beam expansion (GBE) method is often used to model PALs because it is a computationally efficient approach, however the method relies on a paraxial approximation that can result in significant inaccuracies at large steering angles. To address this limitation, a steerable non-paraxial GBE is proposed in this article, where the mainlobe of the steered ultrasonic beam is included in the calculation by rotating the coordinate system.
View Article and Find Full Text PDFA steerable parametric array loudspeaker (PAL) can electronically steer highly directional audio beams in the desired direction. The challenge of modelling a steerable PAL is to obtain the audio sound pressure in both near and far fields with a low computational load. To address this issue, an extension of the spherical wave expansion is proposed in this paper.
View Article and Find Full Text PDFThis work investigates the scattering by a rigid sphere of audio sound generated by a parametric array loudspeaker (pal). A computationally efficient method utilizing a spherical harmonic expansion is developed to calculate the quasilinear solution of audio sound fields based on both Kuznetsov and Westervelt equations. The accuracy of using the Westervelt equation is examined, and the rigid sphere scattering effects are simulated with the proposed method.
View Article and Find Full Text PDFThis paper investigates the feasibility of remotely generating a quiet zone in an acoustic free field using multiple parametric array loudspeakers (PALs). A primary sound field is simulated using point monopoles located randomly in a two-dimensional plane, or three-dimensional (3D) space, whereas the secondary sound field is generated by multiple PALs uniformly distributed around the circumference of a circle sitting on the same plane as the primary sources, or on the surface of a sphere for 3D space. A quiet zone size is defined as the diameter of the maximal circular zone within which the noise reduction is greater than 10 dB.
View Article and Find Full Text PDFIn this work, a cylindrical expansion for the audio sound generated by a steerable baffled parametric array loudspeaker (PAL) based on the phased array technique is derived from the Westervelt equation. The expansion is a series of twofold summations with uncoupled angular and radial components in the cylindrical coordinate system. The angular component is determined by the trigonometric functions, and the radial component is an integral containing the Bessel functions and an arbitrary excitation velocity profile.
View Article and Find Full Text PDFThe near and far fields of traditional loudspeakers are differentiated by whether the sound pressure amplitude is inversely proportional to the propagating distance. However, the audio sound field generated by a parametric array loudspeaker (PAL) is more complicated, and in this article it is proposed to be divided into three regions: near field, Westervelt far field, and inverse-law far field. In the near field, the audio sound experiences strong local effects and an efficient quasilinear solution is presented.
View Article and Find Full Text PDFThis article uses a normal mode approach to predict atmospheric sound propagation over a locally reacting impedance plane. The semi-analytic finite element method is used to compute the normal modes, which enables the exact governing wave equation for a moving fluid to be solved in two dimensions. A locally reacting surface is added using the general Ingard-Myers boundary condition, and the transmission loss is obtained for cylindrical and spherical spreading for range independent problems.
View Article and Find Full Text PDFThis article presents a finite element based solution of the exact governing wave equation for a stratified inhomogeneous moving media. The model is applied to a two dimensional range independent problem in outdoor sound propagation in which the ground is treated as perfectly reflecting. The sound pressure field is expanded as a sum over eigenmodes propagating in the range direction, and the semi analytic finite element method is used to solve the governing eigenequation.
View Article and Find Full Text PDFJ Acoust Soc Am
October 2020
The reflection of audio sounds generated by a parametric array loudspeaker (PAL) is investigated in this paper. The image source method and the non-paraxial PAL radiation model under the quasilinear approximation are used to calculate the reflected audio sound from an infinitely large surface with an arbitrary incident angle. The effects of the surface absorption in the ultrasound frequency range are studied, and the simulation and experiment results show that the reflection behavior of audio sounds generated by a PAL is different from those generated by traditional audio sources.
View Article and Find Full Text PDFUnlike the audio sound generated by traditional sources, the directivity of that generated by a parametric array loudspeaker (pal) deteriorates significantly after passing through a thin partition. To study this phenomenon, the pal radiation model based on the Westervelt equation, and the plane wave expansion method are used to calculate the sound fields behind a sheet of aluminum foil and a porous material blanket under the quasi-linear assumption, where the paraxial approximation is assumed only for ultrasonic waves. The audio sounds generated by a point monopole and a traditional directional source are presented for comparison.
View Article and Find Full Text PDFLong range ultrasonic testing of pipelines sends an ultrasonic wave along a pipe wall and then detects scattering from defects present. It is well known that scattering by pipe fixtures and fittings, such as a flange, can cause distortion and interfere with the ability to identify defects. This article develops a theoretical model to investigate scattering from a flange in a fluid-filled pipe with elastic walls.
View Article and Find Full Text PDFThe existing non-paraxial expression of audio sounds generated by a parametric array loudspeaker (pal) is hard to calculate due to the fivefold integral in it. A rigorous solution of the Westervelt equation under the quasilinear approximation is developed in this paper for circular PALs by using the spherical harmonics expansion, which simplifies the expression into a series of threefold summations with uncoupled angular and radial components. The angular component is determined by Legendre polynomials and the radial one is an integral involving spherical Bessel functions, which converge rapidly.
View Article and Find Full Text PDFIt has been reported that audible sounds can be heard behind a parametric array loudspeaker in free field, which cannot be predicted by existing models. A non-paraxial model is developed in this paper for the finite size and disk-shaped parametric source based on quasilinear approximation and disk scattering theory. The sounds on both front and back sides are calculated numerically and compared with the existing non-paraxial model for the parametric source installed in an infinitely large baffle.
View Article and Find Full Text PDFThis article develops a numerical model suitable for analysing elastic wave scattering in buried pipelines. The model is based on a previous so-called hybrid approach, where a nominally infinite length of pipe is split up into uniform and non-uniform regions. The key challenge for buried structures is in enforcing the appropriate boundary conditions in both the axial and radial directions, which must encompass the entire length of the structure, as well as the surrounding material.
View Article and Find Full Text PDFViscoelastic coatings are often used to protect pipelines in the oil and gas industry. However, over time defects and areas of corrosion often form in these pipelines and so it is desirable to monitor the structural integrity of these coated pipes using techniques similar to those used on uncoated pipelines. A common approach is to use ultrasonic guided waves that work on the pulse-echo principle; however, the energy in the guided waves can be heavily attenuated by the coating and so significantly reduce the effective range of these techniques.
View Article and Find Full Text PDFSplitter silencers are found in ventilation and gas turbine systems and consist of parallel baffles of porous material placed within a duct so that they split the mean gas flow. Theoretical investigations into dissipative splitter silencers have generally been limited to two dimensions and this limits the analysis to finding the silencer eigenmodes or, for a finite length silencer, to rectangular baffles only. In this article a numerical point collocation approach is used to extend theoretical predictions to three dimensions.
View Article and Find Full Text PDFAcoustic intensity is normally treated as a real quantity, but in recent years, many articles have appeared in which intensity is treated as a complex quantity where the real (active) part is related to local mean energy flow and the imaginary (reactive) part to local oscillatory transport of energy. This offers the potential to recover additional information about a sound field and then to relate this to the properties of the sound source and the environment that surrounds it. However, this approach is applicable only to multi-modal sound fields, which places significant demands on the accuracy of the intensity measurements.
View Article and Find Full Text PDFA numerical model based on a hybrid finite element method is developed that seeks to join sound pressure fields in interior and exterior regions. The hybrid method is applied to the analysis of sound radiation from open pipes, or ducts, and uses mode matching to couple a finite element discretization of the region surrounding the open end of the duct to wave based modal expansions for adjoining interior and exterior regions. The hybrid method facilitates the analysis of ducts of arbitrary but uniform cross section as well the study of conical flanges and here a modal expansion based on spherical harmonics is applied.
View Article and Find Full Text PDFJ Acoust Soc Am
October 2008
Sound propagation in an acoustic waveguide is examined using a hybrid numerical technique. Here, the waveguide is assumed to be infinite in length with an arbitrary but uniform cross section. Placed centrally within the guide is a short component section with an irregular nonuniform shape.
View Article and Find Full Text PDFAn analytic mode matching scheme that includes higher order modes is developed for a straight-through circular dissipative silencer. Uniform mean flow is added to the central airway and a concentric perforated screen separates the mean flow from a bulk reacting porous material. Transmission loss predictions are compared with experimental measurements and good agreement is demonstrated for three different silencers.
View Article and Find Full Text PDFJ Acoust Soc Am
April 2006
This article presents an analytic mode-matching approach suitable for modelling the propagation of sound in a two-dimensional, three-part, ducting system. The approach avoids the need to find roots of the characteristic equation for the middle section of the duct (the component) and is readily applicable to a broad class of problems. It is demonstrated that the system of equations, derived via analytic mode-matching, exhibits certain features which ensure that they can be recast into a form that is independent of the roots of the characteristic equation for the component.
View Article and Find Full Text PDFA numerical technique is developed for the analysis of dissipative silencers of arbitrary, but axially uniform, cross section. Mean gas flow is included in a central airway that is separated from a bulk reacting porous material by a concentric perforate screen. The analysis begins by employing the finite element method to extract the eigenvalues and associated eigenvectors for a silencer of infinite length.
View Article and Find Full Text PDF