Publications by authors named "Rawint Narawongsanont"

The emergence of the lumpy skin disease virus (LSDV) was first detected in north-eastern Thailand in March 2021. Since then, the abrupt increase of LSD cases was observed throughout the country as outbreaks have spread rapidly to 64 out of a total of 77 provinces within four months. Blood, milk, and nodular skin samples collected from affected animals have been diagnosed by real-time PCR targeting the gene.

View Article and Find Full Text PDF

Aldo-keto reductases (AKRs) are NADPH/NADP-dependent oxidoreductase enzymes that metabolize an aldehyde/ketone to the corresponding alcohol. AKR4C14 from rice exhibits a much higher efficiency in metabolizing malondialdehyde (MDA) than do the Arabidopsis enzymes AKR4C8 and AKR4C9, despite sharing greater than 60% amino-acid sequence identity. This study confirms the role of rice AKR4C14 in the detoxification of methylglyoxal and MDA, and demonstrates that the endogenous contents of both aldehydes in transgenic Arabidopsis ectopically expressing AKR4C14 are significantly lower than their levels in the wild type.

View Article and Find Full Text PDF

Environmental stresses often cause a rapid and excessive accumulation of reactive oxygen species (ROS), the toxicity of which is further amplified by downstream aldehyde production. Aldo-keto reductase (AKR) is a group of enzymes metabolizing aldehyde/ketone to the corresponding alcohol using NADPH as the cofactor. In this study, OsI_20197 (AKR4C15), a novel member of AKR4 subfamily C, was isolated and biochemically characterized.

View Article and Find Full Text PDF

Aldo-keto reductase (AKR) is an enzyme superfamily whose members are involved in the metabolism of aldehydes/ketones. The AKR4 subfamily C (AKR4C) is a group of aldo-keto reductases that are found in plants. Some AKR4C(s) in dicot plants are capable of metabolizing reactive aldehydes whereas, such activities have not been reported for AKR4C(s) from monocot species.

View Article and Find Full Text PDF