Publications by authors named "Rawee Dangviriyakul"

In this work, three different modified cements, control apatite/beta-tricalcium phosphate cement (CPC), polymeric CPC (p-CPC), and bioactive glass added polymeric cement (p-CPC/BG) were evaluated regarding their physical properties and the responses of primary human osteoblast cells (HObs) and mesenchymal stem cells (MSCs). Although polyacrylic acid (PAA) increased compressive strength and Young's modulus of the cement, it could cause poor apatite phase formation, a prolonged setting time, and a lower degradation rate. Consequently, bioactive glass (BG) was added to PAA/cement to improve its physical properties, such as compressive strength, Young's modulus, setting time, and degradation.

View Article and Find Full Text PDF

Injectable biphasic calcium phosphate bone cements (BCPCs) composed of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) have been intensively investigated because of their high rate of biodegradation, bioactivity and osteoconductivity, which can be adjusted by changing the ratio between β-TCP and HA phases after setting. The aim of this study was to evaluate the performance of 1 wt% chitosan fiber additive with biphasic calcium phosphate as an injectable bone cement both in vitro and in vivo. In vitro evaluation of compressive strength, degradation rate, morphology, and cell and alkaline phosphatase activities was done by comparison with bone cement without β-TCP.

View Article and Find Full Text PDF