In this study, innovative electrode materials for lithium-ion batteries (LIBs) were developed and characterized, demonstrating significant performance enhancements. Initially, NMC622@TiO was synthesized using a wet-chemical method with titanium(IV) ethoxide as the Ti source. Advanced structural investigations confirmed the successful formation of a core@shell structure with negligible cation mixing (Li/Ni) at the NMC622 surface, contributing to enhanced electrochemical performance.
View Article and Find Full Text PDFNatural rubber (NR) and its derivatives play indispensable roles in various industries due to their unique properties and versatile applications. However, the widespread utilization of NR faces intrinsic challenges such as limited mechanical strength, poor resistance to heat and organic solvent, poor electrical conductivity, and low compatibility with other materials, prompting researchers to explore enhancing its performance. Modified NRs (MNRs) like cyclization, deproteinization, chlorination, epoxidation, or grafting NR demonstrated a few enhanced merits compared to NR.
View Article and Find Full Text PDFThe exploitation of epoxidized natural rubber (ENR) in electrochemical applications is approaching its limits because of its poor thermo-mechanical properties. These properties could be improved by chemical and/or physical modification, including grafting and/or crosslinking techniques. In this work, acrylonitrile (ACN) has been successfully grafted onto ENR- 25 by a radical photopolymerization technique.
View Article and Find Full Text PDF