Microbiome-based therapies for inflammatory bowel diseases offer a novel and promising therapeutic approach. The human commensal bacteria of the species Christensenella minuta (C. minuta) have been reported consistently missing in patients affected by Crohn's disease (CD) and have been documented to induce anti-inflammatory effects in human epithelial cells, supporting their potential as a novel biotherapy.
View Article and Find Full Text PDFDuring the last decade, a plethora of novel therapies containing live microorganisms as active substance(s) has emerged with the aim to treat, prevent, or cure diseases in human beings. Both the Food and Drug Administration (FDA) and the European Directorate for the Quality of Medicines and Health Care (EDQM) codified these biotherapies as Live Biotherapeutic Products (LBPs). While these innovative products offer healthcare opportunities, they also represent a challenge for developers who need to set the most suitable designs for non-clinical and clinical studies in order to demonstrate a positive benefit/risk ratio through relevant quality, safety, and efficacy data that are expected by the drug competent authorities.
View Article and Find Full Text PDFare human gut dwelling bacteria that have been proposed as key members of the gut microbiome, regulating energy balance and adiposity of their host. We formerly identified that a novel strain of (strain DSM33407) boosted microbiota diversity and stimulated deconjugation of the primary bile acid taurocholic acid in human samples. However, there is no description of a bile salt hydrolase (BSH) protein carried in the genome of .
View Article and Find Full Text PDFChristensenellaceae is a family of subdominant commensal bacteria found in humans. It is thought to play an important role in gut health by maintaining microbial symbiosis. Indeed, these bacteria occur at significantly lower levels or are absent in individuals suffering from inflammatory bowel diseases (IBDs).
View Article and Find Full Text PDFActivation of the Wnt signaling cascade plays a pivotal role during development and in various disease states. Wnt signals are transduced by seven-transmembrane Frizzled (Fz) proteins and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6). Genetic mutations resulting in a loss or gain of function of LRP5 in humans lead to osteopenia and bone formation, respectively.
View Article and Find Full Text PDFIn the United States, it is estimated that $10-15 billion is spent annually for the treatment of osteoporotic fracture. The worldwide annual incidence of osteoporotic hip fracture exceeds 1.7 million cases.
View Article and Find Full Text PDFKremen1 and Kremen2 (Krm1 and Krm2) are transmembrane coreceptors for Dickkopf1 (Dkk1), an antagonist of Wnt/beta-catenin signaling. The physiological relevance of Kremen proteins in mammals as Wnt modulators is unresolved. We generated and characterized Krm mutant mice and found that double mutants show enhanced Wnt signaling accompanied by ectopic postaxial forelimb digits and expanded apical ectodermal ridges.
View Article and Find Full Text PDFDickkopf-1 (Dkk1) protein is a secreted inhibitor of canonical Wnt signaling and modulates that pathway during embryonic development. It is also implicated in several diseases and hence Dkk1 is a potential target for therapeutic intervention. In the present study 6His-tagged Dkk1 expression and secretion was assessed in five mammalian cell types.
View Article and Find Full Text PDFHuman genetic studies have firmly established a link between bone mass in humans and gain-of-function or loss-of-function mutations in a Wnt coreceptor, low-density lipoprotein receptor-related protein 5 (LRP5), or in the Wnt antagonist sclerostin, and several molecular genetic studies in mice have consistently confirmed the critical importance of the Wnt signaling pathway in skeletal biology and disease. In what may be a novel paradigm, the ubiquitous nature of LRP5/6 and Wnt signaling is counterbalanced by the bone-restricted and regulated expression of Wnt antagonists such as sclerostin and Dickkopf-1 (Dkk1) in adult tissues, offering new and potentially safe therapeutic means of intervention to stimulate bone formation.
View Article and Find Full Text PDFThe recent identification of a link between bone mass in humans and gain- or loss-of-function mutations in the Wnt coreceptor low-density lipoprotein receptor-related protein 5 (osteoporosis pseudoglioma syndrome, high bone mass trait) or in the Wnt antagonist sclerostin (sclerosteosis, van Buchem syndrome) has called the attention of academic and industry scientists and clinicians to the importance of this signaling pathway in skeletal biology and disease. Multiple genetic and pharmacological manipulations of Wnt signaling in mice have since then confirmed the central role of this pathway in regulating bone formation.
View Article and Find Full Text PDFBackground And Purpose: Rheumatoid arthritis (RA) is a chronic inflammatory disease. Histone deacetylase inhibitors (HDACi), a new class of anti-cancer agents, have recently been reported to exhibit potent anti-inflammatory activities. A proof of concept study was carried out with suberoylanilide hydroxamic acid (SAHA) and MS-275, two HDACi currently undergoing clinical investigations for various oncological indications.
View Article and Find Full Text PDFThe identification of a link between bone mass in humans and gain- [high bone mass (HBM) trait] or loss-of-function [osteoporosis pseudoglioma (OPPG) syndrome] mutations in the Wnt coreceptor lipoprotein receptor-related protein (LRP)5 or in the Wnt antagonist sclerostin (sclerosteosis, Van Buchem syndrome) has called the attention of academic and industry scientists and clinicians to the importance of this signaling pathway in skeletal biology and disease. Multiple genetic and pharmacological manipulations of Wnt signaling in mice have since then confirmed the central role of this pathway in both the establishment of peak bone mass and its maintenance throughout life. Wnt signaling appears to be located downstream of bone morphogenetic proteins (BMPs), itself induced by Hedgehog (Hh) signaling, suggesting that it is the successive recruitment of these three intracellular signaling cascades that allow the full expression of the genetic patterns that characterize the osteoblast, the cell responsible for the formation of bone.
View Article and Find Full Text PDFUnlabelled: Wnt/beta-catenin signaling has been proven to play a central role in bone biology. Unexpectedly, the Wnt antagonist Dkk2 is required for terminal osteoblast differentiation and mineralized matrix formation. We show that Dkk1, unlike Dkk2, negatively regulates osteoblast differentiation and bone formation.
View Article and Find Full Text PDFOne of the well characterized cell biologic actions of lithium is the inhibition of glycogen synthase kinase-3beta and the consequent activation of canonical Wnt signaling. Because deficient Wnt signaling has been implicated in disorders of reduced bone mass, we tested whether lithium could improve bone mass in mice. We gavage-fed lithium chloride to 8-week-old mice from three different strains (Lrp5(-/-), SAMP6, and C57BL/6) and assessed the effect on bone metabolism after 4 weeks of therapy.
View Article and Find Full Text PDFExpert Opin Ther Targets
October 2005
The prevention and treatment of osteoporosis traditionally involves the use of antiresorptive agents that target osteoclast function. Antiresorptive therapy is not associated with a significant increase in bone mass and, thus, only partially reduces the risk of fractures. For that reason, the search for anabolic agents, which target osteoblast function, represents an urgent medical need.
View Article and Find Full Text PDFSmad7 functions as an intracellular antagonist in transforming growth factor-beta (TGF-beta) signaling. In addition to interacting stably with the activated TGF-beta type I receptor (TbetaRI) to prevent phosphorylation of the receptor-regulated Smads (Smad2 and Smad3), Smad7 also induces degradation of the activated TbetaRI through association with different E3 ubiquitin ligases. Using the two-hybrid screen, we identified atrophin 1-interacting protein 4 (AIP4) as an E3 ubiquitin ligase that specifically targets Smad7 for ubiquitin-dependent degradation without affecting the turnover of the activated TbetaRI.
View Article and Find Full Text PDFWnt/beta-catenin signaling is involved in a large variety of modeling and remodeling processes including cell polarity, cell differentiation, and cell migration. Recently, a role of the Wnt pathway in bone biology has been demonstrated. However, the precise mechanism by which Wnt proteins regulate bone formation still remains to be elucidated.
View Article and Find Full Text PDFLow density lipoprotein receptor-related protein 5 (LRP5) has been identified as a Wnt co-receptor involved in the activation of the beta-catenin signaling pathway. To improve our understanding of the molecular mechanisms by which LRP5 triggers the canonical Wnt signaling cascade, we have screened for potential partners of LRP5 using the yeast two-hybrid system and identified Frat1 as a protein interacting with the cytoplasmic domain of LRP5. We demonstrate here that LRP5/Frat1 interaction is involved in beta-catenin nuclear translocation and TCF-1 transcriptional activation.
View Article and Find Full Text PDFActivation of the Wnt signaling cascade provides key signals during development and in disease. Wnt signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single transmembrane low density lipoprotein receptor-related proteins 5 or 6. In the course of the analysis of genes regulated by bone morphogenetic protein 2 in mesenchymal cells we found a significant induction of murine Frizzled-1 (mFz1) gene expression.
View Article and Find Full Text PDFUnlabelled: Wnt/beta-catenin signaling has recently been suggested to be involved in bone biology. The precise role of this cascade in osteoblast differentiation was examined. We show that a Wnt autocrine loop mediates the induction of alkaline phosphatase and mineralization by BMP-2 in pre-osteoblastic cells.
View Article and Find Full Text PDFAlthough several independent studies of gene expression patterns during osteoblast differentiation in cultures from calvaria and other in vitro models have been reported, only a small portion of the mRNAs expressed in osteoblasts have been characterized. We have previously analyzed the behavior of several known markers in osteoblasts, using Affymetrix GeneChip murine probe arrays (27,000 genes). In the present study we report larger groups of transcripts displaying significant expression modulation during the culture of osteoblasts isolated from mice calvaria.
View Article and Find Full Text PDFIn humans, low peak bone mass is a significant risk factor for osteoporosis. We report that LRP5, encoding the low-density lipoprotein receptor-related protein 5, affects bone mass accrual during growth. Mutations in LRP5 cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG).
View Article and Find Full Text PDFWe have investigated the effect of 1-(5-oxohexyl)-3,7-dimethylxanthine or pentoxifylline (PeTx), a nonselective phosphodiesterase inhibitor, on osteoblastic differentiation in vitro by using two mesenchymal cell lines, C3H10T1/2 and C2C12, which are able to acquire the osteoblastic phenotype in the presence of bone morphogenetic protein-2 (BMP-2). PeTx induced the osteoblastic markers, osteocalcin and Osf2/Cbfa1, in C3H10T1/2 and C2C12 cells and enhanced BMP-2-induced expression of osteocalcin, Osf2/Cbfa1, and alkaline phosphatase. This activity was partially attributed to the fact that PeTx is able to enhance BMP-2-induced Smad1 transcriptional activity.
View Article and Find Full Text PDF