Publications by authors named "Ravits J"

Hyperphosphorylated TDP-43 aggregates in the cytoplasm of motor neurons is a neuropathological signature of amyotrophic lateral sclerosis (ALS). These aggregates have been proposed to possess a toxic disease driving role in ALS pathogenesis and progression, however, the contribution of phosphorylation to TDP-43 aggregation and ALS disease mechanisms remains poorly understood. We've previously shown that CK1δ and CK1ε phosphorylate TDP-43 at disease relevant sites, and that genetic reduction and chemical inhibition could reduce phosphorylated TDP-43 (pTDP-43) levels in cellular models.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the safety, tolerability, and pharmacokinetics of BIIB078, an investigational treatment targeting the genetic cause of amyotrophic lateral sclerosis (ALS) linked to the C9orf72 gene mutation.
  • The trial involved 106 participants with C9orf72-associated ALS, who were randomly assigned to receive varying doses of BIIB078 or a placebo over a treatment period of three to six months.
  • Results showed that all participants experienced at least one adverse event, mostly mild or moderate, indicating that while BIIB078 did pose some risks, it did not lead to a high rate of treatment discontinuation.
View Article and Find Full Text PDF

Hyperphosphorylated TAR DNA-binding protein 43 (TDP-43) aggregates in the cytoplasm of neurons is the neuropathological hallmark of amyotrophic lateral sclerosis (ALS) and a group of neurodegenerative diseases collectively referred to as TDP-43 proteinopathies that includes frontotemporal dementia, Alzheimer's disease, and limbic onset age-related TDP-43 encephalopathy. The mechanism of TDP-43 phosphorylation is poorly understood. Previously we reported casein kinase 1 epsilon gene (CSNK1E gene encoding CK1ε protein) as being tightly correlated with phosphorylated TDP-43 (pTDP-43) pathology.

View Article and Find Full Text PDF

Background: Alpha-synuclein (α-Syn) oligomers and fibrils have been shown to augment the aggregation of TAR DNA-binding Protein 43 (TDP-43) monomers in vitro, supporting the idea that TDP-43 proteinopathies such as ALS may be modulated by the presence of toxic forms of α-Syn. Recently, parkinsonian features were reported in a study of European patients and Lewy bodies have been demonstrated pathologically in a similar series of patients. Based on these and other considerations, we sought to determine whether seed-competent α-Syn can be identified in spinal fluid of patients with ALS including familial, sporadic, and Guamanian forms of the disease.

View Article and Find Full Text PDF

Although mutations in dozens of genes have been implicated in familial forms of amyotrophic lateral sclerosis (fALS) and frontotemporal degeneration (fFTD), most cases of these conditions are sporadic (sALS and sFTD), with no family history, and their etiology remains obscure. We tested the hypothesis that somatic mosaic mutations, present in some but not all cells, might contribute in these cases, by performing ultra-deep, targeted sequencing of 88 genes associated with neurodegenerative diseases in postmortem brain and spinal cord samples from 404 individuals with sALS or sFTD and 144 controls. Known pathogenic germline mutations were found in 20.

View Article and Find Full Text PDF

The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons.

View Article and Find Full Text PDF
Article Synopsis
  • MicroRNAs (miRNAs) play a role in regulating mRNA expression, and their disruption is linked to diseases like amyotrophic lateral sclerosis (ALS), particularly in cases involving the gene FUS, which affects miRNA production.
  • Researchers examined the miRNA profiles in the spinal cords and hippocampi of ALS-FUS mice to identify differences in miRNA expression across various central nervous system regions and disease states.
  • One significant finding was that miR-1197, which targets the TRIB2 protein, was less expressed in motor neurons from ALS patients, and stabilizing TRIB2 with an existing cancer drug improved the survival of these neurons, highlighting TRIB2 as a potential target for ALS treatment.
View Article and Find Full Text PDF

Background And Objective: Patients with neuromuscular disease are often treated with home noninvasive ventilation (NIV) with devices capable of remote patient monitoring. We sought to determine whether long-term NIV data could provide insight into the effectiveness of ventilation over time.

Methods: We abstracted available longitudinal data for adults with neuromuscular disease in monthly increments from first available to most recent.

View Article and Find Full Text PDF
Article Synopsis
  • - Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disease that leads to the loss of motor neurons and can also cause cognitive and behavioral changes in about half of the cases.
  • - Approximately 10-15% of ALS cases are directly linked to genetic factors, with the majority being sporadic but influenced by genetic risk.
  • - Research involving whole genome sequencing of monozygotic twins discordant for ALS showed that somatic mutations and epigenetic changes may contribute to the disease, pointing to mechanisms like new mutations, DNA repair issues, and accelerated aging.
View Article and Find Full Text PDF

Hexanucleotide repeat expansion (HRE) within is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread derepression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including HRE-mediated FTD (C9-FTD).

View Article and Find Full Text PDF

While acetylated, RNA-binding-deficient TDP-43 reversibly phase separates within nuclei into complex droplets (anisosomes) comprised of TDP-43-containing liquid outer shells and liquid centres of HSP70-family chaperones, cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we show that transient oxidative stress, proteasome inhibition or inhibition of the ATP-dependent chaperone activity of HSP70 provokes reversible cytoplasmic TDP-43 de-mixing and transition from liquid to gel/solid, independently of RNA binding or stress granules. Isotope labelling mass spectrometry was used to identify that phase-separated cytoplasmic TDP-43 is bound by the small heat-shock protein HSPB1.

View Article and Find Full Text PDF

Penfield’s motor homunculus anthropomorphizes the cerebral level of motor control, the upper motor neuron. However, it leaves the cranial and spinal motor neurons unrepresented. Here Ravits and Stack redress the imbalance by presenting a lower motor neuron homunculus.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by aberrant alternative splicing (AS). Nuclear loss and cytoplasmic accumulation of the splicing factor TDP-43 in motor neurons (MN) are hallmarks of ALS at late stages of the disease. However, it is unknown if altered AS is present before TDP-43 pathology occurs.

View Article and Find Full Text PDF

RIPK1 is a master regulator of multiple cell death pathways, including apoptosis and necroptosis, and inflammation. Importantly, activation of RIPK1 has also been shown to promote the transcriptional induction of proinflammatory cytokines in cells undergoing necroptosis, in animal models of amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD), and in human ALS and AD. Rare human genetic carriers of non-cleavable RIPK1 variants (D324V and D324H) exhibit distinct symptoms of recurrent fevers and increased transcription of proinflammatory cytokines.

View Article and Find Full Text PDF

Purpose Of Review: Physician communication skills are a critical part of care for amyotrophic lateral sclerosis (ALS) patients and caregivers. They shape the development of autonomy and quality of life, and they mitigate emotional trauma. Communication skills are especially critical at 2 different time points in the course of the disease: early when delivering and establishing the diagnosis, and later when clarifying goals of care.

View Article and Find Full Text PDF

SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis is a progressive fatal neurodegenerative disease caused by loss of motor neurons and characterized neuropathologically in almost all cases by nuclear depletion and cytoplasmic aggregation of TDP-43, a nuclear RNA-binding protein (RBP). We identified ELAVL3 as one of the most downregulated genes in our transcriptome profiles of laser captured microdissection of motor neurons from sporadic ALS nervous systems and the most dysregulated of all RBPs. Neuropathological characterizations showed ELAVL3 nuclear depletion in a great percentage of remnant motor neurons, sometimes accompanied by cytoplasmic accumulations.

View Article and Find Full Text PDF

Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.

Objective: To identify the genetic variants associated with juvenile ALS.

Design, Setting, And Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation.

View Article and Find Full Text PDF

Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR.

View Article and Find Full Text PDF

Objective: There is a critical need to establish genetic markers that explain the complex phenotypes and pathogenicity of ALS. This study identified a polymorphism in the Stathmin-2 gene and investigated its association with sporadic ALS (sALS) disease risk, age-of onset and survival duration.

Methods: The candidate CA repeat was systematically analyzed using PCR, Sanger sequencing and high throughput capillary separation for genotyping.

View Article and Find Full Text PDF

Nucleolar stress has been implicated in the pathology and disease pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) from repeat expansions of GGGGCC in C9orf72 (C9-ALS/FTLD) but not in sporadic ALS (SALS). Previously we reported that antisense RNA transcripts are unique in C9-ALS because of their nucleolar localization in spinal motor neurons and correlation with TDP-43 mislocalization, the hallmark proteinopathy of ALS and FTLD. Here we report our further studies of 11 SALS, 11 C9-ALS and 11 control spinal cords.

View Article and Find Full Text PDF